“ValueError: cannot reindex from a duplicate axis”

被刻印的时光 ゝ 提交于 2019-11-30 20:36:57

Assumed that you have your Timestamp as index to begin with, you need to do the resample first, and reset_index before doing a groupby, here's the working sample:

import pandas as pd

df
                       A   B   C  ...
Timestamp                            
2014-11-09 00:00:00  NaN   1 NaN  NaN
2014-11-09 00:00:00    2 NaN NaN  NaN
2014-11-09 00:00:00  NaN NaN   3  NaN
2014-11-09 08:24:00  NaN NaN   1  NaN
2014-11-09 08:24:00  105 NaN NaN  NaN
2014-11-09 09:19:00  NaN NaN  23  NaN

df.resample('1Min', how='max').reset_index().groupby('Timestamp').sum()

                      A   B   C  ...
Timestamp                           
2014-11-09 00:00:00   2   1   3  NaN
2014-11-09 00:01:00 NaN NaN NaN  NaN
2014-11-09 00:02:00 NaN NaN NaN  NaN
2014-11-09 00:03:00 NaN NaN NaN  NaN
2014-11-09 00:04:00 NaN NaN NaN  NaN
...
2014-11-09 09:17:00 NaN NaN NaN  NaN
2014-11-09 09:18:00 NaN NaN NaN  NaN
2014-11-09 09:19:00 NaN NaN  23  NaN

Hope this helps.

Updated:

As said in comment, your 'Timestamp' isn't datetime and probably as string so you cannot resample by DatetimeIndex, just reset_index and convert it something like this:

df = df.reset_index()
df['ts'] = pd.to_datetime(df['Timestamp'])
# 'ts' is now datetime of 'Timestamp', you just need to set it to index
df = df.set_index('ts')
...

Now just run the previous code again but replace 'Timestamp' with 'ts' and you should be OK.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!