I'd like to 'shear' a numpy array. I'm not sure I'm using the term 'shear' correctly; by shear, I mean something like:
Shift the first column by 0 places
Shift the second column by 1 place
Shift the third colum by 2 places
etc...
So this array:
array([[11, 12, 13],
[17, 18, 19],
[35, 36, 37]])
would turn into either this array:
array([[11, 36, 19],
[17, 12, 37],
[35, 18, 13]])
or something like this array:
array([[11, 0, 0],
[17, 12, 0],
[35, 18, 13]])
depending on how we handle the edges. I'm not too particular about edge behavior.
Here's my attempt at a function that does this:
import numpy
def shear(a, strength=1, shift_axis=0, increase_axis=1, edges='clip'):
strength = int(strength)
shift_axis = int(shift_axis)
increase_axis = int(increase_axis)
if shift_axis == increase_axis:
raise UserWarning("Shear can't shift in the direction it increases")
temp = numpy.zeros(a.shape, dtype=int)
indices = []
for d, num in enumerate(a.shape):
coords = numpy.arange(num)
shape = [1] * len(a.shape)
shape[d] = num
coords = coords.reshape(shape) + temp
indices.append(coords)
indices[shift_axis] -= strength * indices[increase_axis]
if edges == 'clip':
indices[shift_axis][indices[shift_axis] < 0] = -1
indices[shift_axis][indices[shift_axis] >= a.shape[shift_axis]] = -1
res = a[indices]
res[indices[shift_axis] == -1] = 0
elif edges == 'roll':
indices[shift_axis] %= a.shape[shift_axis]
res = a[indices]
return res
if __name__ == '__main__':
a = numpy.random.random((3,4))
print a
print shear(a)
It seems to work. Please tell me if it doesn't!
It also seems clunky and inelegant. Am I overlooking a builtin numpy/scipy function that does this? Is there a cleaner/better/more efficient way to do this in numpy? Am I reinventing the wheel?
EDIT:
Bonus points if this works on an N-dimensional array, instead of just the 2D case.
This function will be at the very center of a loop I'll repeat many times in our data processing, so I suspect it's actually worth optimizing.
SECOND EDIT: I finally did some benchmarking. It looks like numpy.roll is the way to go, despite the loop. Thanks, tom10 and Sven Marnach!
Benchmarking code: (run on Windows, don't use time.clock on Linux I think)
import time, numpy
def shear_1(a, strength=1, shift_axis=0, increase_axis=1, edges='roll'):
strength = int(strength)
shift_axis = int(shift_axis)
increase_axis = int(increase_axis)
if shift_axis == increase_axis:
raise UserWarning("Shear can't shift in the direction it increases")
temp = numpy.zeros(a.shape, dtype=int)
indices = []
for d, num in enumerate(a.shape):
coords = numpy.arange(num)
shape = [1] * len(a.shape)
shape[d] = num
coords = coords.reshape(shape) + temp
indices.append(coords)
indices[shift_axis] -= strength * indices[increase_axis]
if edges == 'clip':
indices[shift_axis][indices[shift_axis] < 0] = -1
indices[shift_axis][indices[shift_axis] >= a.shape[shift_axis]] = -1
res = a[indices]
res[indices[shift_axis] == -1] = 0
elif edges == 'roll':
indices[shift_axis] %= a.shape[shift_axis]
res = a[indices]
return res
def shear_2(a, strength=1, shift_axis=0, increase_axis=1, edges='roll'):
indices = numpy.indices(a.shape)
indices[shift_axis] -= strength * indices[increase_axis]
indices[shift_axis] %= a.shape[shift_axis]
res = a[tuple(indices)]
if edges == 'clip':
res[indices[shift_axis] < 0] = 0
res[indices[shift_axis] >= a.shape[shift_axis]] = 0
return res
def shear_3(a, strength=1, shift_axis=0, increase_axis=1):
if shift_axis > increase_axis:
shift_axis -= 1
res = numpy.empty_like(a)
index = numpy.index_exp[:] * increase_axis
roll = numpy.roll
for i in range(0, a.shape[increase_axis]):
index_i = index + (i,)
res[index_i] = roll(a[index_i], i * strength, shift_axis)
return res
numpy.random.seed(0)
for a in (
numpy.random.random((3, 3, 3, 3)),
numpy.random.random((50, 50, 50, 50)),
numpy.random.random((300, 300, 10, 10)),
):
print 'Array dimensions:', a.shape
for sa, ia in ((0, 1), (1, 0), (2, 3), (0, 3)):
print 'Shift axis:', sa
print 'Increase axis:', ia
ref = shear_1(a, shift_axis=sa, increase_axis=ia)
for shear, label in ((shear_1, '1'), (shear_2, '2'), (shear_3, '3')):
start = time.clock()
b = shear(a, shift_axis=sa, increase_axis=ia)
end = time.clock()
print label + ': %0.6f seconds'%(end-start)
if (b - ref).max() > 1e-9:
print "Something's wrong."
print
The approach in tom10's answer can be extended to arbitrary dimensions:
def shear3(a, strength=1, shift_axis=0, increase_axis=1):
if shift_axis > increase_axis:
shift_axis -= 1
res = numpy.empty_like(a)
index = numpy.index_exp[:] * increase_axis
roll = numpy.roll
for i in range(0, a.shape[increase_axis]):
index_i = index + (i,)
res[index_i] = roll(a[index_i], -i * strength, shift_axis)
return res
numpy roll does this. For example, if you original array is x then
for i in range(x.shape[1]):
x[:,i] = np.roll(x[:,i], i)
produces
[[11 36 19]
[17 12 37]
[35 18 13]]
This can be done using a trick described in this answer by Joe Kington:
from numpy.lib.stride_tricks import as_strided
a = numpy.array([[11, 12, 13],
[17, 18, 19],
[35, 36, 37]])
shift_axis = 0
increase_axis = 1
b = numpy.vstack((a, a))
strides = list(b.strides)
strides[increase_axis] -= strides[shift_axis]
strides = (b.strides[0], b.strides[1] - b.strides[0])
as_strided(b, shape=b.shape, strides=strides)[a.shape[0]:]
# array([[11, 36, 19],
# [17, 12, 37],
# [35, 18, 13]])
To get "clip" instead of "roll", use
b = numpy.vstack((numpy.zeros(a.shape, int), a))
This is probably the most efficient way of doing it, since it does not use any Python loop at all.
Here is a cleaned-up version of your own approach:
def shear2(a, strength=1, shift_axis=0, increase_axis=1, edges='clip'):
indices = numpy.indices(a.shape)
indices[shift_axis] -= strength * indices[increase_axis]
indices[shift_axis] %= a.shape[shift_axis]
res = a[tuple(indices)]
if edges == 'clip':
res[indices[shift_axis] < 0] = 0
res[indices[shift_axis] >= a.shape[shift_axis]] = 0
return res
The main difference is that it uses numpy.indices()
instead of rolling your own version of this.
r = lambda l, n: l[n:]+l[:n]
transpose(map(r, transpose(a), range(0, len(a)))
I think. You should probably consider this psuedocode more than actual Python. Basically transpose the array, map a general rotate function over it to do the rotation, then transpose it back.
来源:https://stackoverflow.com/questions/4998587/shear-a-numpy-array