import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小 batch_size = 64 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) keep_prob=tf.placeholder(tf.float32) # 784-1000-500-10 #创建一个简单的神经网络 W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1)) b1 = tf.Variable(tf.zeros([1000])+0.1) L1 = tf.nn.tanh(tf.matmul(x,W1)+b1) L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1)) b2 = tf.Variable(tf.zeros([500])+0.1) L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2) L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1)) b3 = tf.Variable(tf.zeros([10])+0.1) prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #正则项 l2_loss = tf.nn.l2_loss(W1) + tf.nn.l2_loss(b1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(b2) + tf.nn.l2_loss(W3) + tf.nn.l2_loss(b3) #交叉熵 loss = tf.losses.softmax_cross_entropy(y,prediction) + 0.0005*l2_loss #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(31): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))
来源:https://www.cnblogs.com/liuwenhua/p/11605487.html