How to use Haar wavelet to detect LINES on an image?

社会主义新天地 提交于 2019-11-30 13:58:11

The following is a complete example of applying Hough Transform to detect lines. I am using MATLAB for the job..

The trick is to divide the image into regions and process each differently; this is because you have different "textures" in your scene (tiles on the upper region of the wall are quite different from the darker ones on the bottom, and processing the image all at once wont be optimal).

As a working example, consider this one:

%# load image, blur it, then find edges
I0  = rgb2gray( imread('http://www.de-viz.ru/catalog/new2/Holm/hvannaya.jpg') );
I = imcrop(I0, [577 156 220 292]);     %# select a region of interest
I = imfilter(I, fspecial('gaussian', [7 7], 1), 'symmetric');
BW = edge(I, 'canny');

%# Hough Transform and show accumulated matrix
[H T R] = hough(BW, 'RhoResolution',2, 'Theta',-90:0.5:89.5);
imshow(imadjust(mat2gray(H)), [], 'XData',T, 'YData',R, ...
       'InitialMagnification','fit')
xlabel('\theta (degrees)'), ylabel('\rho')
axis on, axis normal, colormap(hot), colorbar, hold on

%# detect peaks
P  = houghpeaks(H, 20, 'threshold',ceil(0.5*max(H(:))));
plot(T(P(:,2)), R(P(:,1)), 'gs', 'LineWidth',2);

%# detect lines and overlay on top of image
lines = houghlines(BW, T, R, P, 'FillGap',50, 'MinLength',5);
figure, imshow(I), hold on
for k = 1:length(lines)
    xy = [lines(k).point1; lines(k).point2];
    plot(xy(:,1), xy(:,2), 'g.-', 'LineWidth',2);
end
hold off

You could try the same procedure for other regions while tuning the parameters to get good results..

Have you tried a simpler approach such as the Hough transform for finding lines? A function to perform this and example are included in OpenCV called cvHoughLines2.

Two-dimensional wavelet transforms are implemented in R using the package waveslim. Specifically, the function dwt2D() uses a C "backend" for speed. You can then apply thresholding to find the lines.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!