问题
time_interval = [4, 6, 12]
I want to sum up the numbers like [4, 4+6, 4+6+12]
in order to get the list t = [4, 10, 22]
.
I tried the following:
for i in time_interval:
t1 = time_interval[0]
t2 = time_interval[1] + t1
t3 = time_interval[2] + t2
print(t1, t2, t3)
4 10 22
4 10 22
4 10 22
回答1:
If you're doing much numerical work with arrays like this, I'd suggest numpy, which comes with a cumulative sum function cumsum:
import numpy as np
a = [4,6,12]
np.cumsum(a)
#array([4, 10, 22])
Numpy is often faster than pure python for this kind of thing, see in comparison to @Ashwini's accumu:
In [136]: timeit list(accumu(range(1000)))
10000 loops, best of 3: 161 us per loop
In [137]: timeit list(accumu(xrange(1000)))
10000 loops, best of 3: 147 us per loop
In [138]: timeit np.cumsum(np.arange(1000))
100000 loops, best of 3: 10.1 us per loop
But of course if it's the only place you'll use numpy, it might not be worth having a dependence on it.
回答2:
In Python 2 you can define your own generator function like this:
def accumu(lis):
total = 0
for x in lis:
total += x
yield total
In [4]: list(accumu([4,6,12]))
Out[4]: [4, 10, 22]
And in Python 3.2+ you can use itertools.accumulate():
In [1]: lis = [4,6,12]
In [2]: from itertools import accumulate
In [3]: list(accumulate(lis))
Out[3]: [4, 10, 22]
回答3:
Behold:
a = [4, 6, 12]
reduce(lambda c, x: c + [c[-1] + x], a, [0])[1:]
Will output (as expected):
[4, 10, 22]
回答4:
I did a bench-mark of the top two answers with Python 3.4 and I found itertools.accumulate
is faster than numpy.cumsum
under many circumstances, often much faster. However, as you can see from the comments, this may not always be the case, and it's difficult to exhaustively explore all options. (Feel free to add a comment or edit this post if you have further benchmark results of interest.)
Some timings...
For short lists accumulate
is about 4 times faster:
from timeit import timeit
def sum1(l):
from itertools import accumulate
return list(accumulate(l))
def sum2(l):
from numpy import cumsum
return list(cumsum(l))
l = [1, 2, 3, 4, 5]
timeit(lambda: sum1(l), number=100000)
# 0.4243644131347537
timeit(lambda: sum2(l), number=100000)
# 1.7077815784141421
For longer lists accumulate
is about 3 times faster:
l = [1, 2, 3, 4, 5]*1000
timeit(lambda: sum1(l), number=100000)
# 19.174508565105498
timeit(lambda: sum2(l), number=100000)
# 61.871223849244416
If the numpy
array
is not cast to list
, accumulate
is still about 2 times faster:
from timeit import timeit
def sum1(l):
from itertools import accumulate
return list(accumulate(l))
def sum2(l):
from numpy import cumsum
return cumsum(l)
l = [1, 2, 3, 4, 5]*1000
print(timeit(lambda: sum1(l), number=100000))
# 19.18597290944308
print(timeit(lambda: sum2(l), number=100000))
# 37.759664884768426
If you put the imports outside of the two functions and still return a numpy
array
, accumulate
is still nearly 2 times faster:
from timeit import timeit
from itertools import accumulate
from numpy import cumsum
def sum1(l):
return list(accumulate(l))
def sum2(l):
return cumsum(l)
l = [1, 2, 3, 4, 5]*1000
timeit(lambda: sum1(l), number=100000)
# 19.042188624851406
timeit(lambda: sum2(l), number=100000)
# 35.17324400227517
回答5:
values = [4, 6, 12]
total = 0
sums = []
for v in values:
total = total + v
sums.append(total)
print 'Values: ', values
print 'Sums: ', sums
Running this code gives
Values: [4, 6, 12]
Sums: [4, 10, 22]
回答6:
First, you want a running list of subsequences:
subseqs = (seq[:i] for i in range(1, len(seq)+1))
Then you just call sum
on each subsequence:
sums = [sum(subseq) for subseq in subseqs]
(This isn't the most efficient way to do it, because you're adding all of the prefixes repeatedly. But that probably won't matter for most use cases, and it's easier to understand if you don't have to think of the running totals.)
If you're using Python 3.2 or newer, you can use itertools.accumulate to do it for you:
sums = itertools.accumulate(seq)
And if you're using 3.1 or earlier, you can just copy the "equivalent to" source straight out of the docs (except for changing next(it)
to it.next()
for 2.5 and earlier).
回答7:
If You want a pythonic way without numpy working in 2.7 this would be my way of doing it
l = [1,2,3,4]
_d={-1:0}
cumsum=[_d.setdefault(idx, _d[idx-1]+item) for idx,item in enumerate(l)]
now let's try it and test it against all other implementations
import timeit
L=range(10000)
def sum1(l):
cumsum=[]
total = 0
for v in l:
total += v
cumsum.append(total)
return cumsum
def sum2(l):
import numpy as np
return list(np.cumsum(l))
def sum3(l):
return [sum(l[:i+1]) for i in xrange(len(l))]
def sum4(l):
return reduce(lambda c, x: c + [c[-1] + x], l, [0])[1:]
def this_implementation(l):
_d={-1:0}
return [_d.setdefault(idx, _d[idx-1]+item) for idx,item in enumerate(l)]
# sanity check
sum1(L)==sum2(L)==sum3(L)==sum4(L)==this_implementation(L)
>>> True
# PERFORMANCE TEST
timeit.timeit('sum1(L)','from __main__ import sum1,sum2,sum3,sum4,this_implementation,L', number=100)/100.
>>> 0.001018061637878418
timeit.timeit('sum2(L)','from __main__ import sum1,sum2,sum3,sum4,this_implementation,L', number=100)/100.
>>> 0.000829620361328125
timeit.timeit('sum3(L)','from __main__ import sum1,sum2,sum3,sum4,this_implementation,L', number=100)/100.
>>> 0.4606760001182556
timeit.timeit('sum4(L)','from __main__ import sum1,sum2,sum3,sum4,this_implementation,L', number=100)/100.
>>> 0.18932826995849608
timeit.timeit('this_implementation(L)','from __main__ import sum1,sum2,sum3,sum4,this_implementation,L', number=100)/100.
>>> 0.002348129749298096
回答8:
Assignment expressions from PEP 572 (expected for Python 3.8) offer yet another way to solve this:
time_interval = [4, 6, 12]
total_time = 0
cum_time = [total_time := total_time + t for t in time_interval]
回答9:
Try this: accumulate function, along with operator add performs the running addition.
import itertools
import operator
result = itertools.accumulate([1,2,3,4,5], operator.add)
list(result)
回答10:
You can calculate the cumulative sum list in linear time with a simple for
loop:
def csum(lst):
s = lst.copy()
for i in range(1, len(s)):
s[i] += s[i-1]
return s
time_interval = [4, 6, 12]
print(csum(time_interval)) # [4, 10, 22]
The standard library's itertools.accumulate may be a faster alternative (since it's implemented in C):
from itertools import accumulate
time_interval = [4, 6, 12]
print(list(accumulate(time_interval))) # [4, 10, 22]
回答11:
Try this:
result = []
acc = 0
for i in time_interval:
acc += i
result.append(acc)
回答12:
In [42]: a = [4, 6, 12]
In [43]: [sum(a[:i+1]) for i in xrange(len(a))]
Out[43]: [4, 10, 22]
This is slighlty faster than the generator method above by @Ashwini for small lists
In [48]: %timeit list(accumu([4,6,12]))
100000 loops, best of 3: 2.63 us per loop
In [49]: %timeit [sum(a[:i+1]) for i in xrange(len(a))]
100000 loops, best of 3: 2.46 us per loop
For larger lists, the generator is the way to go for sure. . .
In [50]: a = range(1000)
In [51]: %timeit [sum(a[:i+1]) for i in xrange(len(a))]
100 loops, best of 3: 6.04 ms per loop
In [52]: %timeit list(accumu(a))
10000 loops, best of 3: 162 us per loop
回答13:
Somewhat hacky, but seems to work:
def cumulative_sum(l):
y = [0]
def inc(n):
y[0] += n
return y[0]
return [inc(x) for x in l]
I did think that the inner function would be able to modify the y
declared in the outer lexical scope, but that didn't work, so we play some nasty hacks with structure modification instead. It is probably more elegant to use a generator.
回答14:
Without having to use Numpy, you can loop directly over the array and accumulate the sum along the way. For example:
a=range(10)
i=1
while((i>0) & (i<10)):
a[i]=a[i-1]+a[i]
i=i+1
print a
Results in:
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
回答15:
def cummul_sum(list_arguement):
cumm_sum_lst = []
cumm_val = 0
for eachitem in list_arguement:
cumm_val += eachitem
cumm_sum_lst.append(cumm_val)
return cumm_sum_lst
回答16:
A pure python oneliner for cumulative sum:
cumsum = lambda X: X[:1] + cumsum([X[0]+X[1]] + X[2:]) if X[1:] else X
This is a recursive version inspired by recursive cumulative sums. Some explanations:
- The first term
X[:1]
is a list containing the previous element and is almost the same as[X[0]]
(which would complain for empty lists). - The recursive
cumsum
call in the second term processes the current element[1]
and remaining list whose length will be reduced by one. if X[1:]
is shorter forif len(X)>1
.
Test:
cumsum([4,6,12])
#[4, 10, 22]
cumsum([])
#[]
And simular for cumulative product:
cumprod = lambda X: X[:1] + cumprod([X[0]*X[1]] + X[2:]) if X[1:] else X
Test:
cumprod([4,6,12])
#[4, 24, 288]
回答17:
l = [1,-1,3]
cum_list = l
def sum_list(input_list):
index = 1
for i in input_list[1:]:
cum_list[index] = i + input_list[index-1]
index = index + 1
return cum_list
print(sum_list(l))
回答18:
In Python3, To find the cumulative sum of a list where the i
th element
is the sum of the first i+1 elements from the original list, you may do:
a = [4 , 6 , 12]
b = []
for i in range(0,len(a)):
b.append(sum(a[:i+1]))
print(b)
OR you may use list comprehension:
b = [sum(a[:x+1]) for x in range(0,len(a))]
Output
[4,10,22]
回答19:
lst = [4,6,12]
[sum(lst[:i+1]) for i in xrange(len(lst))]
If you are looking for a more efficient solution (bigger lists?) a generator could be a good call (or just use numpy
if you really care about perf).
def gen(lst):
acu = 0
for num in lst:
yield num + acu
acu += num
print list(gen([4, 6, 12]))
回答20:
This would be Haskell-style:
def wrand(vtlg):
def helpf(lalt,lneu):
if not lalt==[]:
return helpf(lalt[1::],[lalt[0]+lneu[0]]+lneu)
else:
lneu.reverse()
return lneu[1:]
return helpf(vtlg,[0])
来源:https://stackoverflow.com/questions/15889131/how-to-find-the-cumulative-sum-of-numbers-in-a-list