list 对象
list 对象的定义
list对象内部是使用数组实现,在数组中存储的是指针,指向要保存的对象。
allocated是list中数组的大小,ob_size是当前已经使用的数组大小。
typedef struct {
// 可变长对象中有 ob_size,保存当前已经使用的数组大小
PyObject_VAR_HEAD
PyObject **ob_item; // 数组的指针
Py_ssize_t allocated; // 分配的数组长度
} PyListObject;
list 对象的缓存
list对象有缓存机制,对象在释放时会保存到空闲缓存池,待下一次申请的时候使用。 缓存池可以缓存80个list对象,缓存池满的时候list对象直接释放。
从list对象的创建和销毁过程了解它的缓存机制(为了关注重点,代码被简化过)。
// 缓存池的大小定义
#define PyList_MAXFREELIST 80
// 创建新的list对象
PyObject* PyList_New(Py_ssize_t size)
{
PyListObject *op;
size_t nbytes = size * sizeof(PyObject *);
// 如果缓存有空闲,直接从缓存中分配list对象的内存
if (numfree) {
numfree--;
op = free_list[numfree];
_Py_NewReference((PyObject *)op);
} else {
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (op == NULL)
return NULL;
}
if (size <= 0)
op->ob_item = NULL;
else {
op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
if (op->ob_item == NULL) {
Py_DECREF(op);
return PyErr_NoMemory();
}
memset(op->ob_item, 0, nbytes);
}
Py_SIZE(op) = size;
op->allocated = size;
_PyObject_GC_TRACK(op);
return (PyObject *) op;
}
// 销毁list对象
static void list_dealloc(PyListObject *op)
{
Py_ssize_t i;
PyObject_GC_UnTrack(op);
Py_TRASHCAN_SAFE_BEGIN(op)
if (op->ob_item != NULL) {
i = Py_SIZE(op);
while (--i >= 0) {
Py_XDECREF(op->ob_item[i]);
}
PyMem_FREE(op->ob_item);
}
// 保存list对象到空闲的缓存
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
free_list[numfree++] = op;
else
Py_TYPE(op)->tp_free((PyObject *)op);
Py_TRASHCAN_SAFE_END(op)
}
list 的插入,删除,添加操作
list的内部实现是数组,所以在插入和删除的操作会引起内部元素的移动。在添加操作时,如果目前list对象分配的内存没有使用完,则直接在尾部追加。
看下list的插入和添加操作。
// 插入操作
int PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
return ins1((PyListObject *)op, where, newitem);
}
static int ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
Py_ssize_t i, n = Py_SIZE(self);
PyObject **items;
if (v == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
// 判断是否重新分配长度
if (list_resize(self, n+1) == -1)
return -1;
// 寻找插入点
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
// 移动元素
items = self->ob_item;
for (i = n; --i >= where; )
items[i+1] = items[i];
Py_INCREF(v);
items[where] = v;
return 0;
}
// 添加操作
int PyList_Append(PyObject *op, PyObject *newitem)
{
if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);
PyErr_BadInternalCall();
return -1;}static int app1(PyListObject *self, PyObject *v){
Py_ssize_t n = PyList_GET_SIZE(self);
assert (v != NULL);
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) == -1)
return -1;
Py_INCREF(v);
PyList_SET_ITEM(self, n, v);
return 0;
}
list对象总结
list对象内部有定量的缓存,提高创建list对象的速度
list对象的插入,删除操作成本较高,不适宜频繁操作。
append操作速度较快。
dict 对象
dict对象的定义
dict对象的实现内部是散列表,散列函数采用的开放地址法,理论上算法的时间复杂度是 O(1) 。
dict对象在散列表小于8的时候,使用对象内部数组 ma_smalltable 的内存。
// 内部数组空间,创建长度较小的散列时使用
#define PyDict_MINSIZE 8
// 散列表的数据项
typedef struct {
Py_ssize_t me_hash;
PyObject *me_key;
PyObject *me_value;} PyDictEntry;// dict 对象struct _dictobject {
PyObject_HEAD
Py_ssize_t ma_fill; // 使用的计数 + 伪删除的dummy计数
Py_ssize_t ma_used; // 使用的计数
Py_ssize_t ma_mask;
PyDictEntry *ma_table; // 散列表内存指针
PyDictEntry *(*ma_lookup)(PyDictObject *mp, PyObject *key, long hash);
PyDictEntry ma_smalltable[PyDict_MINSIZE]; // 内部优化,散列表较小时的内存
};
dict对象的缓存
dict对象也有缓存机制,对象释放时保存到缓存池中,待下一次申请的时候使用。缓存池可以缓存80个dict对象,缓存池满的时候dict对象直接释放。
从dict对象的创建和销毁过程了解它的缓存机制(为了关注重点,代码被简化过)。
// 缓存池的大小定义
#define PyDict_MAXFREELIST 80
// 创建 dict 对象
PyObject* PyDict_New(void)
{
register PyDictObject *mp;
// 创建 dummy对象,在删除的时候占位使用
if (dummy == NULL) { /* Auto-initialize dummy */
dummy = PyString_FromString("<dummy key>");
if (dummy == NULL)
return NULL;
}
// 判断如果缓存有空闲,使用缓存中的 dict对象
if (numfree) {
mp = free_list[--numfree];
assert (mp != NULL);
assert (Py_TYPE(mp) == &PyDict_Type);
_Py_NewReference((PyObject *)mp);
if (mp->ma_fill) {
EMPTY_TO_MINSIZE(mp);
} else {
INIT_NONZERO_DICT_SLOTS(mp);
}
assert (mp->ma_used == 0);
assert (mp->ma_table == mp->ma_smalltable);
assert (mp->ma_mask == PyDict_MINSIZE - 1);
} else {
mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
if (mp == NULL)
return NULL;
EMPTY_TO_MINSIZE(mp);
}
mp->ma_lookup = lookdict_string;
return (PyObject *)mp;
}
// 释放dict的函数
static void dict_dealloc(register PyDictObject *mp)
{
register PyDictEntry *ep;
Py_ssize_t fill = mp->ma_fill;
PyObject_GC_UnTrack(mp);
Py_TRASHCAN_SAFE_BEGIN(mp)
for (ep = mp->ma_table; fill > 0; ep++) {
if (ep->me_key) {
--fill;
Py_DECREF(ep->me_key);
Py_XDECREF(ep->me_value);
}
}
if (mp->ma_table != mp->ma_smalltable)
PyMem_DEL(mp->ma_table);
// 如果缓存还有空闲空间,则缓存释放的 dict 对象
if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
free_list[numfree++] = mp;
else
Py_TYPE(mp)->tp_free((PyObject *)mp);
Py_TRASHCAN_SAFE_END(mp)
}
开放地址散列表的主要查找算法
dict 对象散列查找算法,首先比较key是否相同,不相同则探测下一个位置,一直到找到元素,或者查找失败。在查找失败的时候,返回第一个可用的位置。
static PyDictEntry *lookdict(PyDictObject *mp, PyObject *key, register long hash)
{
register size_t i;
register size_t perturb;
register PyDictEntry *freeslot;
register size_t mask = (size_t)mp->ma_mask;
PyDictEntry *ep0 = mp->ma_table;
register PyDictEntry *ep;
register int cmp;
PyObject *startkey;
// 查找散列位置
i = (size_t)hash & mask;
ep = &ep0[i];
if (ep->me_key == NULL || ep->me_key == key)
return ep;
// 判断散列位置是否为删除后的占位对象
if (ep->me_key == dummy)
freeslot = ep;
else {
// 散列hash匹配,进一步查找
if (ep->me_hash == hash) {
startkey = ep->me_key;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0)
return NULL;
if (ep0 == mp->ma_table && ep->me_key == startkey) {
if (cmp > 0)
return ep;
}
else {
return lookdict(mp, key, hash);
}
}
freeslot = NULL;
}
// 在探测链上寻找匹配项
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
i = (i << 2) + i + perturb + 1;
ep = &ep0[i & mask];
if (ep->me_key == NULL)
return freeslot == NULL ? ep : freeslot;
if (ep->me_key == key)
return ep;
if (ep->me_hash == hash && ep->me_key != dummy) {
startkey = ep->me_key;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0)
return NULL;
if (ep0 == mp->ma_table && ep->me_key == startkey) {
if (cmp > 0)
return ep;
}
else {
return lookdict(mp, key, hash);
}
}
else if (ep->me_key == dummy && freeslot == NULL)
freeslot = ep;
}
return 0;
}
dict 对象总结
dict对象采用开放地址散列法。
dict对象内部有定量的缓存,提高创建dict对象的速度。
对于长度较小的dict对象,直接使用对象内部的内存,无需二次分配内存,性能较好。
原文链接: zg手册 之 python2.7.7源码分析(3)-- list 对象和 dict 对象
来源:oschina
链接:https://my.oschina.net/u/1579041/blog/306716