Pandas seems to ignore first column name when reading tab-delimited data, gives KeyError

我的梦境 提交于 2019-11-30 03:08:47

问题


I am using pandas 0.12.0 in ipython3 on Ubuntu 13.10, in order to wrangle large tab-delimited datasets in txt files. Using read_table to create a DataFrame from the txt appears to work, and the first row is read as a header, but attempting to access the first column using its name as an index throws a KeyError. I don't understand why this happens, given that the column names all appear to have been read correctly, and every other column can be indexed in this way.

The data looks like this:

RECORDING_SESSION_LABEL LEFT_GAZE_X LEFT_GAZE_Y RIGHT_GAZE_X    RIGHT_GAZE_Y    VIDEO_FRAME_INDEX   VIDEO_NAME
73_1    .   .   395.1   302 .   .
73_1    .   .   395 301.9   .   .
73_1    .   .   394.9   301.7   .   .
73_1    .   .   394.8   301.5   .   .
73_1    .   .   394.6   301.3   .   .
73_1    .   .   394.7   300.9   .   .
73_1    .   .   394.9   301.3   .   .
73_1    .   .   395.2   302 1   1_1_just_act.avi
73_1    .   .   395.3   302.3   1   1_1_just_act.avi
73_1    .   .   395.4   301.9   1   1_1_just_act.avi
73_1    .   .   395.7   301.5   1   1_1_just_act.avi
73_1    .   .   395.9   301.5   1   1_1_just_act.avi
73_1    .   .   396 301.5   1   1_1_just_act.avi
73_1    .   .   395.9   301.5   1   1_1_just_act.avi
15_1    395.4   301.7   .   .   .   .

The delimiter is definitely tabs, and there is no trailing or leading whitespace.

The error occurs with this minimal program:

import pandas as pd

samples = pd.read_table('~/datafile.txt')

print(samples['RECORDING_SESSION_LABEL'])

which gives the error:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-65-137d3c16b931> in <module>()
----> 1 print(samples['RECORDING_SESSION_LABEL'])

/usr/lib/python3/dist-packages/pandas/core/frame.py in __getitem__(self, key)
   2001             # get column
   2002             if self.columns.is_unique:
-> 2003                 return self._get_item_cache(key)
   2004 
   2005             # duplicate columns

/usr/lib/python3/dist-packages/pandas/core/generic.py in _get_item_cache(self, item)
    665             return cache[item]
    666         except Exception:
--> 667             values = self._data.get(item)
    668             res = self._box_item_values(item, values)
    669             cache[item] = res

/usr/lib/python3/dist-packages/pandas/core/internals.py in get(self, item)
   1654     def get(self, item):
   1655         if self.items.is_unique:
-> 1656             _, block = self._find_block(item)
   1657             return block.get(item)
   1658         else:

/usr/lib/python3/dist-packages/pandas/core/internals.py in _find_block(self, item)
   1934 
   1935     def _find_block(self, item):
-> 1936         self._check_have(item)
   1937         for i, block in enumerate(self.blocks):
   1938             if item in block:

/usr/lib/python3/dist-packages/pandas/core/internals.py in _check_have(self, item)
   1941     def _check_have(self, item):
   1942         if item not in self.items:
-> 1943             raise KeyError('no item named %s' % com.pprint_thing(item))
   1944 
   1945     def reindex_axis(self, new_axis, method=None, axis=0, copy=True):

KeyError: 'no item named RECORDING_SESSION_LABEL'

Simply doing print(samples) gives the expected output of printing the whole table, complete with the first column and its header. Trying to print any other column (ie; the exact same code, but with 'RECORDING_SESSION_LABEL' replaced with 'LEFT_GAZE_X') works as it should. Furthermore, the header seems to have been read in correctly, and pandas recognizes 'RECORDING_SESSION_LABEL' as a column name. This is evidenced by using the .info() method and viewing the .columns attribute of samples, after it's been read in:

>samples.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 28 entries, 0 to 27
Data columns (total 7 columns):
RECORDING_SESSION_LABEL    28  non-null values
LEFT_GAZE_X                 28  non-null values
LEFT_GAZE_Y                 28  non-null values
RIGHT_GAZE_X                28  non-null values
RIGHT_GAZE_Y                28  non-null values
VIDEO_FRAME_INDEX           28  non-null values
VIDEO_NAME                  28  non-null values
dtypes: object(7)

>print(samples.columns)

Index(['RECORDING_SESSION_LABEL', 'LEFT_GAZE_X', 'LEFT_GAZE_Y', 'RIGHT_GAZE_X', 'RIGHT_GAZE_Y', 'VIDEO_FRAME_INDEX', 'VIDEO_NAME'], dtype=object)

Another error behaviour that I feel is related occurs when using ipython's tab completion, which allows me to access the columns of samples as if they were attributes. It works for every column except the first. ie; hitting the tab key with >samples.R only suggests samples.RIGHT_GAZE_X samples.RIGHT_GAZE_Y.

So why is it behaving normally when looking at the whole dataframe, but failing when trying to access the first column by its name, even though it appears to have correctly read in that name?


回答1:


Sounds like you just need to conditionally remove the BOM from the start of your files. You can do this with a wrapper around the file like so:

def remove_bom(filename):
    fp = open(filename, 'rbU')
    if fp.read(2) != b'\xfe\xff':
        fp.seek(0, 0)
    return fp

# read_table also accepts a file pointer, so we can remove the bom first
samples = pd.read_table(remove_bom('~/datafile.txt'))

print(samples['RECORDING_SESSION_LABEL'])



回答2:


This seems to be (related to) a known issue, see GH #4793. Using 'utf-8-sig' as the encoding seems to work. Without it, we have:

>>> df = pd.read_table("datafile.txt")
>>> df.columns
Index([u'RECORDING_SESSION_LABEL', u'LEFT_GAZE_X', u'LEFT_GAZE_Y', u'RIGHT_GAZE_X', u'RIGHT_GAZE_Y', u'VIDEO_FRAME_INDEX', u'VIDEO_NAME'], dtype='object')
>>> df.columns[0]
'\xef\xbb\xbfRECORDING_SESSION_LABEL'

but with it, we have

>>> df = pd.read_table("datafile.txt", encoding="utf-8-sig")
>>> df.columns
Index([u'RECORDING_SESSION_LABEL', u'LEFT_GAZE_X', u'LEFT_GAZE_Y', u'RIGHT_GAZE_X', u'RIGHT_GAZE_Y', u'VIDEO_FRAME_INDEX', u'VIDEO_NAME'], dtype='object')
>>> df.columns[0]
u'RECORDING_SESSION_LABEL'
>>> df["RECORDING_SESSION_LABEL"].max()
u'73_1'

(Used Python 2 for the above, but the same happens with Python 3.)




回答3:


I also stumbled upon similar problem. When I was reading as df = pandas.read_csv(csvfile, sep), the first column had this strange format in name:

df.columns[0]

returned this result:

'\xef\xbb\xbfColName'

When I tried selecting this column, I got an error:

df.ColName

returned

AttributeError: 'DataFrame' object has no attribute 'ColName'

After reading this I just used my external program Sublime to change the encoding and save the file as a new file (save with encoding UTF-8, but without BOM).

Afterwards pandas reads the first column name correctly and I am able to select it withdf.ColName and it returns correct value. Such a small thing that took 45 minutes to solve.

TLDR: Save file with encoding without BOM.




回答4:


I think the issue you're having is just that the "tabs" in datafile.txt aren't actually tabs. (When I read it in using your code, the dataframe has 1 column and 15 rows.) You could do a regex search-and-replace, or, alternately, just parse it as-is:

import pandas as pd
from numpy import transpose

with open('~/datafile.txt', 'r') as datafile:
    data = datafile.read()
while '  ' in data:
    data = data.replace('  ', ' ')
data = transpose([row.split(' ') for row in data.strip().split('\n')])
datadict = {}
for col in data:
    datadict[col[0]] = col[1:]
samples = pd.DataFrame(datadict)
print(samples['RECORDING_SESSION_LABEL'])

This works ok for me on your datafile.txt: the resulting dataframe has 15 rows x 7 columns.



来源:https://stackoverflow.com/questions/21806496/pandas-seems-to-ignore-first-column-name-when-reading-tab-delimited-data-gives

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!