Ubuntu18.04安装测试TensorFlow-GPU

主宰稳场 提交于 2019-11-30 02:49:55

1 安装Ubuntu18.04.03 lts

spt@spt-ts:~$ lsb_release -a
No LSB modules are available.
Distributor ID:    Ubuntu
Description:    Ubuntu 18.04.3 LTS
Release:    18.04
Codename:    bionic
 
spt@spt-ts:~$ df -ah
Filesystem      Size  Used Avail Use% Mounted on
udev            3.9G     0  3.9G   0% /dev
tmpfs           794M  1.9M  792M   1% /run
/dev/sda6       111G  5.5G  100G   6% /
/dev/sda1       454M  112M  315M  27% /boot
/dev/sdb1       916G  142M  870G   1% /home
# swap设置了6GB

找了一个台式机,全盘格式化后,全新安装的Ubuntu18.04.3 LTS

 

2 安装NVIDIA显卡驱动

spt@spt-ts:~$ lspci | grep -i vga
01:00.0 VGA compatible controller: NVIDIA Corporation GM206 [GeForce GTX 950] (rev a1)
显卡:gtx 950 驱动和CUDA对应版本好要求:
 
 
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
ubuntu-drivers devices
sudo apt install xserver-xorg-core
sudo ubuntu-drivers autoinstall
 安装了最新的显卡驱动
 
测试显卡驱动安装结果
spt@spt-ts:~$ nvidia-smi
Fri Sep  6 10:50:46 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 435.21       Driver Version: 435.21       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 950     Off  | 00000000:01:00.0  On |                  N/A |
| 32%   41C    P8    10W / 105W |    207MiB /  2000MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0       974      G   /usr/lib/xorg/Xorg                            13MiB |
|    0      1036      G   /usr/bin/gnome-shell                          48MiB |
|    0      1382      G   /usr/lib/xorg/Xorg                            70MiB |
|    0      1509      G   /usr/bin/gnome-shell                          71MiB |
+-----------------------------------------------------------------------------+
spt@spt-ts:~$

 

3 安装vim ssh服务

 对项目没什么用,我主要是想用ssh连接这台机器。
sudo apt install vim openssh-server

 

4 安装CUDA v10.0

首先根据TensorFlow官方指导,先查好版本兼容性
https://tensorflow.google.cn/install/source 最新版本TensorFlow1.14.0,对应CUDA10.0和cuDNN7.4
1. Download and Run `sudo sh cuda_10.0.130_410.48_linux.run`
2. Download and Run Patch 1 (Released May 10, 2019)
顺便看清楚卸载方式。因为后面测试不同项目,需要不同版本。很有可能需要卸载,然后安装不同版本。
..............................................
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin
uninstall_cuda_10.0.pl
安装后
spt@spt-ts:~$ df -ah
Filesystem      Size  Used Avail Use% Mounted on
sysfs              0     0     0    - /sys
proc               0     0     0    - /proc
udev            3.9G     0  3.9G   0% /dev
devpts             0     0     0    - /dev/pts
tmpfs           794M  2.0M  792M   1% /run
/dev/sda6       111G   12G   94G  11% /
 
设置环境变量,在/etc/profile或~/.bashrc的文件后面添加
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

 

5 安装 cuDNN  v7.4.2 

Download cuDNN v7.4.2 (Dec 14, 2018), for CUDA 10.0
版本号必须匹配上面的CUDA版本
# 下载下面几个文件 Download cuDNN v7.4.2 (Dec 14, 2018), for CUDA 10.0
#cuDNN Library for Linux ---> cudnn-10.0-linux-x64-v7.4.2.24.tgz
#cuDNN Runtime Library for Ubuntu18.04 (Deb)
#cuDNN Developer Library for Ubuntu18.04 (Deb)
#cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)
cuDNN解压安装
spt@spt-ts:~/work/tensorflow$ pwd
/home/spt/work/tensorflow
spt@spt-ts:~/work/tensorflow$ tar xvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
spt@spt-ts:~/work/tensorflow$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
spt@spt-ts:~/work/tensorflow$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
spt@spt-ts:~/work/tensorflow$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

 

6 安装pip3 virtualenv

# 系统默认安装了最新支持版本python3.6
sudo apt install python3-pip python3-dev python-virtualenv
 

7 安装TensorFlow-GPU v1.14.0

spt@spt-ts:~/work/tensorflow$ pwd
/home/spt/work/tensorflow
spt@spt-ts:~/work/tensorflow$ mkdir tsenv
spt@spt-ts:~/work/tensorflow$ virtualenv -p python3 tsenv
spt@spt-ts:~/work/tensorflow$ cd tsenv/
spt@spt-ts:~/work/tensorflow/tsenv$ source bin/activate
(tsenv) spt@spt-ts:~/work/tensorflow/tsenv$ pip3 install --index-url http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com --upgrade tensorflow-gpu
# 采用国内源阿里巴巴下载tensorflow-gpu
# 或者豆瓣 pip3 install --index-url http://pypi.douban.com/simple --trusted-host pypi.douban.com --upgrade tensorflow-gpu
 
# 查看安装情况
(tsenv) spt@spt-ts:~/work/tensorflow/tsenv$ pip3 show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.14.0
 
# 测试
(tsenv) spt@spt-ts:~/work/tensorflow/tsenv/src$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery
(tsenv) spt@spt-ts:/usr/local/cuda/samples/1_Utilities/deviceQuery$ sudo make
(tsenv) spt@spt-ts:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery
./deviceQuery Starting...
 
CUDA Device Query (Runtime API) version (CUDART static linking)
 
cudaGetDeviceCount returned 803
-> system has unsupported display driver / cuda driver combination
Result = FAIL
 
# 结论 驱动和CUDA安装后需要重启,打开桌面环境。再次测试
(tsenv) spt@spt-ts:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery
./deviceQuery Starting...
 
CUDA Device Query (Runtime API) version (CUDART static linking)
 
Detected 1 CUDA Capable device(s)
 
Device 0: "GeForce GTX 950"
  CUDA Driver Version / Runtime Version          10.1 / 10.0
  CUDA Capability Major/Minor version number:    5.2
  Total amount of global memory:                 2001 MBytes (2098069504 bytes)
  ( 6) Multiprocessors, (128) CUDA Cores/MP:     768 CUDA Cores
  GPU Max Clock rate:                            1304 MHz (1.30 GHz)
  Memory Clock rate:                             3305 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 1048576 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            No
  Supports Cooperative Kernel Launch:            No
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
 
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.0, NumDevs = 1
Result = PASS

 

8 至此环境搭建完毕

待测试其他

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!