ValueError: The two structures don't have the same number of elements

孤者浪人 提交于 2019-11-30 02:41:51

问题


with tf.variable_scope('forward'):
  cell_img_fwd = tf.nn.rnn_cell.GRUCell(hidden_state_size, hidden_state_size)
  img_init_state_fwd = rnn_img_mapped[:, 0, :]
  img_init_state_fwd = tf.multiply(
      img_init_state_fwd, 
      tf.zeros([batch_size, hidden_state_size]))
  rnn_outputs2, final_state2 = tf.nn.dynamic_rnn(
      cell_img_fwd, 
      rnn_img_mapped, 
      initial_state=img_init_state_fwd, 
      dtype=tf.float32)

This is my code for a GRU for input of dimension 100x196x50, it should be unpacked along the second dimension (that is 196). hidden_state_size is 50, batch_size is 100. However I get the following error:

ValueError: The two structures don't have the same number of elements.
First structure: Tensor("backward/Tile:0", shape=(100, 50), dtype=float32), 
second structure: 
  (<tf.Tensor 'backward/bwd_states/while/GRUCell/add:0' shape=(100, 50) dtype=float32>, 
   <tf.Tensor 'backward/bwd_states/while/GRUCell/add:0' shape=(100, 50) dtype=float32>).

Any clue how to resolve this?


回答1:


Hello I had the same problem, I tried to do this:

highest = tf.map_fn(lambda x : (-x, x), indices)

This gave me a similar error message:

ValueError: The two structures don't have the same number of elements.

First structure (1 elements): <dtype: 'int32'>

Second structure (2 elements): (<tf.Tensor 'map/while/Neg:0' shape=() dtype=int32>, <tf.Tensor 'map/while/TensorArrayReadV3:0' shape=() dtype=int32>)

I resolved this by making the dtypes explicit:

highest = tf.map_fn(lambda x : (-x, x), indices, dtype=(tf.int32, tf.int32))


来源:https://stackoverflow.com/questions/42776980/valueerror-the-two-structures-dont-have-the-same-number-of-elements

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!