I am attempting to parse a simple indentation sensitive syntax using the Parslet library within Ruby.
The following is an example of the syntax I am attempting to parse:
level0child0
level0child1
level1child0
level1child1
level2child0
level1child2
The resulting tree would look like so:
[
{
:identifier => "level0child0",
:children => []
},
{
:identifier => "level0child1",
:children => [
{
:identifier => "level1child0",
:children => []
},
{
:identifier => "level1child1",
:children => [
{
:identifier => "level2child0",
:children => []
}
]
},
{
:identifier => "level1child2",
:children => []
},
]
}
]
The parser that I have now can parse nesting level 0 and 1 nodes, but cannot parse past that:
require 'parslet'
class IndentationSensitiveParser < Parslet::Parser
rule(:indent) { str(' ') }
rule(:newline) { str("\n") }
rule(:identifier) { match['A-Za-z0-9'].repeat.as(:identifier) }
rule(:node) { identifier >> newline >> (indent >> identifier >> newline.maybe).repeat.as(:children) }
rule(:document) { node.repeat }
root :document
end
require 'ap'
require 'pp'
begin
input = DATA.read
puts '', '----- input ----------------------------------------------------------------------', ''
ap input
tree = IndentationSensitiveParser.new.parse(input)
puts '', '----- tree -----------------------------------------------------------------------', ''
ap tree
rescue IndentationSensitiveParser::ParseFailed => failure
puts '', '----- error ----------------------------------------------------------------------', ''
puts failure.cause.ascii_tree
end
__END__
user
name
age
recipe
name
foo
bar
It's clear that I need a dynamic counter that expects 3 indentation nodes to match a identifier on the nesting level 3.
How can I implement an indentation sensitive syntax parser using Parslet in this way? Is it possible?
There are a few approaches.
Parse the document by recognising each line as a collection of indents and an identifier, then apply a transformation afterwards to reconstruct the hierarchy based on the number of indents.
Use captures to store the current indent and expect the next node to include that indent plus more to match as a child (I didn't dig into this approach much as the next one occurred to me)
Rules are just methods. So you can define 'node' as a method, which means you can pass parameters! (as follows)
This lets you define node(depth)
in terms of node(depth+1)
. The problem with this approach, however, is that the node
method doesn't match a string, it generates a parser. So a recursive call will never finish.
This is why dynamic
exists. It returns a parser that isn't resolved until the point it tries to match it, allowing you to now recurse without problems.
See the following code:
require 'parslet'
class IndentationSensitiveParser < Parslet::Parser
def indent(depth)
str(' '*depth)
end
rule(:newline) { str("\n") }
rule(:identifier) { match['A-Za-z0-9'].repeat(1).as(:identifier) }
def node(depth)
indent(depth) >>
identifier >>
newline.maybe >>
(dynamic{|s,c| node(depth+1).repeat(0)}).as(:children)
end
rule(:document) { node(0).repeat }
root :document
end
This is my favoured solution.
I don't like the idea of weaving knowledge of the indentation process through the whole grammar. I would rather just have INDENT and DEDENT tokens produced that other rules could use similarly to just matching "{" and "}" characters. So the following is my solution. It is a class IndentParser
that any parser can extend to get nl
, indent
, and decent
tokens generated.
require 'parslet'
# Atoms returned from a dynamic that aren't meant to match anything.
class AlwaysMatch < Parslet::Atoms::Base
def try(source, context, consume_all)
succ("")
end
end
class NeverMatch < Parslet::Atoms::Base
attr_accessor :msg
def initialize(msg = "ignore")
self.msg = msg
end
def try(source, context, consume_all)
context.err(self, source, msg)
end
end
class ErrorMatch < Parslet::Atoms::Base
attr_accessor :msg
def initialize(msg)
self.msg = msg
end
def try(source, context, consume_all)
context.err(self, source, msg)
end
end
class IndentParser < Parslet::Parser
##
# Indentation handling: when matching a newline we check the following indentation. If
# that indicates an indent token or detent tokens (1+) then we stick these in a class
# variable and the high-priority indent/dedent rules will match as long as these
# remain. The nl rule consumes the indentation itself.
rule(:indent) { dynamic {|s,c|
if @indent.nil?
NeverMatch.new("Not an indent")
else
@indent = nil
AlwaysMatch.new
end
}}
rule(:dedent) { dynamic {|s,c|
if @dedents.nil? or @dedents.length == 0
NeverMatch.new("Not a dedent")
else
@dedents.pop
AlwaysMatch.new
end
}}
def checkIndentation(source, ctx)
# See if next line starts with indentation. If so, consume it and then process
# whether it is an indent or some number of dedents.
indent = ""
while source.matches?(Regexp.new("[ \t]"))
indent += source.consume(1).to_s #returns a Slice
end
if @indentStack.nil?
@indentStack = [""]
end
currentInd = @indentStack[-1]
return AlwaysMatch.new if currentInd == indent #no change, just match nl
if indent.start_with?(currentInd)
# Getting deeper
@indentStack << indent
@indent = indent #tells the indent rule to match one
return AlwaysMatch.new
else
# Either some number of de-dents or an error
# Find first match starting from back
count = 0
@indentStack.reverse.each do |level|
break if indent == level #found it,
if level.start_with?(indent)
# New indent is prefix, so we de-dented this level.
count += 1
next
end
# Not a match, not a valid prefix. So an error!
return ErrorMatch.new("Mismatched indentation level")
end
@dedents = [] if @dedents.nil?
count.times { @dedents << @indentStack.pop }
return AlwaysMatch.new
end
end
rule(:nl) { anynl >> dynamic {|source, ctx| checkIndentation(source,ctx) }}
rule(:unixnl) { str("\n") }
rule(:macnl) { str("\r") }
rule(:winnl) { str("\r\n") }
rule(:anynl) { unixnl | macnl | winnl }
end
I'm sure a lot can be improved, but this is what I've come up with so far.
Example usage:
class MyParser < IndentParser
rule(:colon) { str(':') >> space? }
rule(:space) { match(' \t').repeat(1) }
rule(:space?) { space.maybe }
rule(:number) { match['0-9'].repeat(1).as(:num) >> space? }
rule(:identifier) { match['a-zA-Z'] >> match["a-zA-Z0-9"].repeat(0) }
rule(:block) { colon >> nl >> indent >> stmt.repeat.as(:stmts) >> dedent }
rule(:stmt) { identifier.as(:id) >> nl | number.as(:num) >> nl | testblock }
rule(:testblock) { identifier.as(:name) >> block }
rule(:prgm) { testblock >> nl.repeat }
root :prgm
end
来源:https://stackoverflow.com/questions/16504958/indentation-sensitive-parser-using-parslet-in-ruby