I have come across this kind of a plot that performs hierarchical clustering over a given set of timeseries data. Can someone tell me how to draw such plots?
I am open to implementations in R
or Javascript, especially using d3.js
.
Vincent Zoonekynd
You can always create the plot by hand:
with base graphics, you the fig
parameter
allows you to add plots inside another plot.
# Sample data
n <- 100
k <- 6
d <- matrix(rnorm(k*n),nc=k)
d[,2] <- d[,1] # To help check the results
colnames(d) <- LETTERS[1:k]
x <- apply(d,2,cumsum)
r <- hclust(dist(t(d)))
# Plot
op <- par(mar=c(0,0,0,0),oma=c(0,2,0,0))
plot(NA,ylim=c(.5,k+.5), xlim=c(0,4),axes=FALSE)
# Dendrogram. See ?hclust for details.
xc <- yc <- rep(NA,k)
o <- 1:k
o[r$order] <- 1:k
for(i in 1:(k-1)) {
a <- r$merge[i,1]
x1 <- if( a<0 ) o[-a] else xc[a]
y1 <- if( a<0 ) 0 else yc[a]
b <- r$merge[i,2]
x2 <- if( b<0 ) o[-b] else xc[b]
y2 <- if( b<0 ) 0 else yc[b]
lines(
3+c(y1,i,i,y2)/k,
c(x1,x1,x2,x2),
lwd=k-i
)
xc[i] <- (x1+x2)/2
yc[i] <- i
}
# Time series
axis(2,1:k,colnames(d)[r$order],las=1)
u <- par()$usr
for(i in 1:k) {
f <- c(0,3,i-.5,i+.5)
f <- c(
(f[1]-u[1])/(u[2]-u[1]),
(f[2]-u[1])/(u[2]-u[1]),
(f[3]-u[3])/(u[4]-u[3]),
(f[4]-u[3])/(u[4]-u[3])
)
par(new=TRUE,fig=f)
plot(x[,r$order[i]],axes=FALSE,xlab="",ylab="",main="",type="l",col="navy",lwd=2)
box()
}
par(op)
(After writing this, I realize that it is probably easier to do with layout
...)
来源:https://stackoverflow.com/questions/9747426/how-can-i-produce-plots-like-this