generating Variations without repetitions / Permutations in java

泄露秘密 提交于 2019-11-29 20:18:54

问题


I have to generate all variations without repetitions made of digits 0 - 9.

Length of them could be from 1 to 10. I really don't know how to solve it, especially how to avoid repetitions.

Example: length of variations: 4 random variations: 9856, 8753, 1243, 1234 etc. (but not 9985 - contains repetition)

I would be really grateful if somebody can help me with that issue, especially giving some code and clues.


回答1:


The keyword to look for is permutation. There is an abundance of source code freely available that performs them.

As for keeping it repetition free I suggest a simple recursive approach: for each digit you have a choice of taking it into your variation or not, so your recursion counts through the digits and forks into two recursive calls, one in which the digit is included, one in which it is excluded. Then, after you reached the last digit each recursion essentially gives you a (unique, sorted) list of repetition-free digits. You can then create all possible permutations of this list and combine all of those permutations to achieve your final result.

(Same as duffymo said: I won't supply code for that)

Advanced note: the recursion is based on 0/1 (exclusion, inclusion) which can directly be translated to bits, hence, integer numbers. Therefore, in order to get all possible digit combinations without actually performing the recursion itself you could simply use all 10-bit integer numbers and iterate through them. Then interpret the numbers such that a set bit corresponds to including the digit in the list that needs to be permuted.




回答2:


Here is my Java code. Feel free to ask if you don't understand. The main point here is:

  1. sort again character array. for example: a1 a2 a3 b1 b2 b3 .... (a1 = a2 = a3)
  2. generate permutation and always keep condition: index of a1 < index of a2 < index of a3 ...
import java.util.Arrays;

public class PermutationDup {

    public void permutation(String s) {
        char[] original = s.toCharArray();
        Arrays.sort(original);
        char[] clone = new char[s.length()];
        boolean[] mark = new boolean[s.length()];
        Arrays.fill(mark, false);
        permute(original, clone, mark, 0, s.length());
    }

    private void permute(char[] original, char[] clone, boolean[] mark, int length, int n) {
        if (length == n) {
            System.out.println(clone);
            return;
        }

        for (int i = 0; i < n; i++) {
            if (mark[i] == true) continue;
            // dont use this state. to keep order of duplicate character
            if (i > 0 && original[i] == original[i-1] && mark[i-1] == false) continue;
            mark[i] = true;
            clone[length] = original[i];
            permute(original, clone, mark, length+1, n);
            mark[i] = false;
        }

    }

    public static void main(String[] args) {
        PermutationDup p = new PermutationDup();
        p.permutation("abcab");
    }
}



回答3:


I have created the following code for generating permutations where ordering is important and with no repetition. It makes use of generics for permuting any type of object:

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class Permutations {

    public static <T> Collection<List<T>> generatePermutationsNoRepetition(Set<T> availableNumbers) {
        Collection<List<T>> permutations = new HashSet<>();

        for (T number : availableNumbers) {
            Set<T> numbers = new HashSet<>(availableNumbers);
            numbers.remove(number);

            if (!numbers.isEmpty()) {
                Collection<List<T>> childPermutations = generatePermutationsNoRepetition(numbers);
                for (List<T> childPermutation : childPermutations) {
                    List<T> permutation = new ArrayList<>();
                    permutation.add(number);
                    permutation.addAll(childPermutation);
                    permutations.add(permutation);
                }
            } else {
                List<T> permutation = new ArrayList<>();
                permutation.add(number);
                permutations.add(permutation);
            }
        }

        return permutations;
    }
}



回答4:


Imagine you had a magical function - given an array of digits, it will return you the correct permutations.

How can you use that function to produce a new list of permutations with just one extra digit?

e.g.,

if i gave you a function called permute_three(char[3] digits), and i tell you that it only works for digits 0, 1, 2, how can you write a function that can permute 0, 1, 2, 3, using the given permute_three function?

...

once you solved that, what do you notice? can you generalize it?




回答5:


using Dollar it is simple:

@Test
public void generatePermutations() {
    // digits is the string "0123456789"
    String digits = $('0', '9').join();

    // then generate 10 permutations
    for (int i : $(10)) {
        // shuffle, the cut (0, 4) in order to get a 4-char permutation
        System.out.println($(digits).shuffle().slice(4));
    }
}



回答6:


The code for this is similar to the one without duplicates, with the addition of an if-else statement.Check this code

In the above code,Edit the for loop as follows

for (j = i; j <= n; j++)
{

if(a[i]!=a[j] && !is_duplicate(a,i,j))              
    {
        swap((a+i), (a+j));
        permute(a, i+1, n);
        swap((a+i), (a+j)); 
    }
    else if(i!=j)  {}  // if no duplicate is present , do nothing           
    else permute(a,i+1,n);  // skip the ith character
}

bool is_duplicate(int *a,int i,int j) 
{
     if a[i] is present between a[j]...a[i] 
        return 1;
    otherwise
        return 0;

}

worked for me




回答7:


Permutation without repetition is based on theorem, that amount of results is factorial of count of elements (in this case numbers). In your case 10! is 10*9*8*7*6*5*4*3*2*1 = 3628800. The proof why it is exactly right is right solution for generation also. Well so how. On first position i.e. from left you can have 10 numbers, on the second position you can have only 9 numbers, because one number is on the position on the left and we cannot repeat the same number etc. (the proof is done by mathematical induction). So how to generate first ten results? According my knowledges, he simplest way is to use cyclic shift. It means the order of number shift to the left on one position (or right if you want) and the number which overflow to put on the empty place. It means for first ten results:

10 9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1 10
8 7 6 5 4 3 2 1 10 9
7 6 5 4 3 2 1 10 9 8
6 5 4 3 2 1 10 9 8 7
5 4 3 2 1 10 9 8 7 6
...

The first line is basic sample, so it is the good idea to put it into set before generation. Advantage is, that in the next step you will have to solve the same problem to avoid undesirable duplicities.

In next step recursively rotate only 10-1 numbers 10-1 times etc. It means for first 9 results in step two:

10 9 8 7 6 5 4 3 2 1
10 8 7 6 5 4 3 2 1 9
10 7 6 5 4 3 2 1 9 8
10 6 5 4 3 2 1 9 8 7
10 5 4 3 2 1 9 8 7 6
...

etc, notice, that first line is present from previous step, so it must not be added to generated set again.

Algorithm recursively doing exactly that, what is explained above. It is possible to generate all the 3628800 combinations for 10!, because number of nesting is the same as number of elements in array (it means in your case for 10 numbers it lingers about 5min. on my computer) and you need have enough memory if you want to keep all combinations in array.

There is solution.

package permutation;

/** Class for generation amount of combinations (factorial)
 * !!! this is generate proper permutations without repeating and proper amount (počet) of rows !!!
 *
 * @author hariprasad
 */
public class TestForPermutationII {
  private static final String BUMPER = "*";
  private static int counter = 0;
  private static int sumsum = 0;
  // definitoin of array for generation
  //int[] testsimple = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  int[] testsimple = {1, 2, 3, 4, 5};
  private int ELEMNUM = testsimple.length;
  int[][] shuff;

  private String gaps(int len) {
    String addGap = "";
    for(int i=0; i <len; i++)
      addGap += "  ";
    return addGap;
  }

  /** Factorial computing */
  private int fact(int num) {
    if (num > 1) {
      return num * fact(num - 1);
    } else {
      return 1;
    }
  }

  /** Cyclic shift position to the left */  
  private int[] lShiftPos(int[] arr, int pos) {
    int[] work = new int[ELEMNUM];
    int offset = -1;
    for (int jj = 0; jj < arr.length; jj++) {
      if (jj < pos) {
        work[jj] = arr[jj];
      } else if (jj <= arr.length - 1) {
        if (jj == pos) {
          offset = arr[pos]; // last element
        }
        if (jj != (arr.length - 1)) {
          work[jj] = arr[jj + 1];
        } else {
          work[jj] = offset;
        }
      }
    }
    return work;
  }

  private String printBuff(int[] buffer) {
    String res = "";
    for (int i= 0; i < buffer.length; i++) {
      if (i == 0) 
        res += buffer[i];
      else
        res += ", " + buffer[i];
    }
    return res;
  };

  /** Recursive generator for arbitrary length of array */
  private String permutationGenerator(int pos, int level) {
    String ret = BUMPER;
    int templen = counter;
    int[] work = new int[ELEMNUM];
    int locsumread = 0;
    int locsumnew = 0;
    //System.out.println("\nCalled level: " + level);

    for (int i = 0; i <= templen; i++) {
      work = shuff[i];
      sumsum++;
      locsumread++;
      for (int ii = 0; ii < pos; ii++) {
        counter++;
        sumsum++;
        locsumnew++;
        work = lShiftPos(work, level); // deep copy
        shuff[counter] = work;
      }
    }

    System.out.println("locsumread, locsumnew: " + locsumread + ", " + locsumnew);
    // if level == ELEMNUM-2, it means no another shift
    if (level < ELEMNUM-2) {
      ret = permutationGenerator(pos-1, level+1);
      ret = "Level " + level + " end.";
      //System.out.println(ret);
    }
    return ret;
  }

  public static void main(String[] argv) {
    TestForPermutationII test = new TestForPermutationII();
    counter = 0;
    int len = test.testsimple.length;
    int[] work = new int[len];

    test.shuff = new int[test.fact(len)][];

    //initial
    test.shuff[counter] = test.testsimple;
    work = test.testsimple; // shalow copy

    test.shuff = new int[test.fact(len)][];
    counter = 0;
    test.shuff[counter] = test.testsimple;
    test.permutationGenerator(len-1, 0);

    for (int i = 0; i <= counter; i++) {
      System.out.println(test.printBuff(test.shuff[i]));
    }

    System.out.println("Counter, cycles: " + counter + ", " + sumsum);
  }
}

Intensity (number of cycles) of algorithm is sum of incomplete factorials of number of members. So there is overhang when partial set is again read to generate next subset, so intensity is:

n! + n!/2! + n!/3! + ... + n!/(n-2)! + n!(n-1)!




回答8:


There is one solution which is not from mine, but it is very nice and sophisticated.

    package permutations;

import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;

/**
 * @author Vladimir Hajek
 *
 */
public class PermutationSimple {
    private static final int MAX_NUMBER = 3;

    Set<String> results = new HashSet<>(0);

    /**
     * 
     */
    public PermutationSimple() {
        // TODO Auto-generated constructor stub
    }

    /**
     * @param availableNumbers
     * @return
     */
    public static List<String> generatePermutations(Set<Integer> availableNumbers) {
        List<String> permutations = new LinkedList<>();

        for (Integer number : availableNumbers) {
            Set<Integer> numbers = new HashSet<>(availableNumbers);
            numbers.remove(number);

            if (!numbers.isEmpty()) {
                List<String> childPermutations = generatePermutations(numbers);
                for (String childPermutation : childPermutations) {
                    String permutation = number + childPermutation;
                    permutations.add(permutation);
                }
            } else {
                permutations.add(number.toString());
            }
        }

        return permutations;
    }

    /**
     * @param args
     */
    public static void main(String[] args) {
        Set<Integer> availableNumbers = new HashSet<>(0);

        for (int i = 1; i <= MAX_NUMBER; i++) {
            availableNumbers.add(i);
        }

        List<String> permutations = generatePermutations(availableNumbers);
        for (String permutation : permutations) {
            System.out.println(permutation);
        }

    }
}

I think, this is the excellent solution.




回答9:


Brief helpful permutation indexing Knowledge

Create a method that generates the correct permutation, given an index value between {0 and N! -1} for "zero indexed" or {1 and N!} for "one indexed".

Create a second method containing a "for loop" where the lower bound is 1 and the upper bound is N!. eg.. "for (i; i <= N!; i++)" for every instance of the loop call the first method, passing i as the argument.



来源:https://stackoverflow.com/questions/1900197/generating-variations-without-repetitions-permutations-in-java

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!