2、python深入装饰器

别说谁变了你拦得住时间么 提交于 2019-11-29 19:13:23

装饰器两个重要的概念:

① ‘@’ 语法糖
② 在不改变原函数代码的基础上,在执行前后进行定制操作

装饰器放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为 装饰器 ,返回值是函数对象。
使用场景:

  • 应用场景:
    • Flask : 路由、before_request、after_request
    • Django: csrf、缓存、内置用户登录认证
    • functools:缓存、warper

在一次的面试中,被面试官问过这样的两个问题:

1、你都用过装饰器实现过什么样的功能?

2、如何写一个可以传参的装饰器?

image

01. Hello,装饰器

装饰器的使用方法很固定

  1. 先定义一个装饰器(帽子)

  2. 再定义你的业务函数或者类(人)

  3. 最后把这装饰器(帽子)扣在这个函数(人)头上

就像下面这样子

def decorator(func):  # 其中func传入要调用装饰器函数, 保留函数原有功能
    def wrapper(*args, **kwargs):  #   wrapper 表示原函数被封装  *args, **kw 可传入多个参数
        if datetime.datetime.now().year == 2020:  # 新的业务逻辑
            print(datetime.datetime.now().year)
            return func(*args, **kwargs)  #调用原函数
        else:
            print('不通过oOooO')

    return wrapper


@decorator
def test(name):
    print('hello,{}!'.format(name))


test('haha')

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以,它的出现,应该是使我们的代码

  • 更加优雅,代码结构更加清晰

  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

02. 入门:日志打印器

首先是日志打印器
实现的功能:

  1. 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。

  2. 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。

# 这是装饰器函数,参数 func 是被装饰的函数
def logger(func):
    def wrapper(*args, **kw):
        print('主人,我准备开始执行:{} 函数了:'.format(func.__name__))
        # 真正执行的是这行。
        func(*args, **kw)
        print('主人,我执行完啦。')

    return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@logger
def add(x, y):    
 print('{} + {} = {}'.format(x, y, x+y))

然后执行一下 add 函数。

add(200, 50)

来看看输出了什么?

主人,我准备开始执行:add 函数了:
200 + 50 = 250
主人,我执行完啦。

03. 入门:时间计时器

再来看看 时间计时器
实现功能:顾名思义,就是计算一个函数的执行时长。

# 这是装饰函数
import time 
def timer(func):
    def wrapper(*args, **kw): 
        t1 = time.time()
        func(*args,**kw)
        t2 = time.time()
        cost_time=t2 - t1
        print("花费时间:{}秒".format(cost_time))
    return wrapper

假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。

import time
@timer
def want_sleep(sleep_time):    
  time.sleep(sleep_time)
want_sleep(10)

来看看输出,如预期一样,输出10秒。

花费时间:10.0073800086975098秒

04. 进阶:带参数的函数装饰器

通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。

不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。

回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,若不能传参的话,我们就要写两个装饰器,这显然是不合理的。

比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。

可以这样像下面这样写,由于这个功能代码比较复杂,不利于学习,这里就不贴了。

@periodic_task(spacing=60)
def send_mail():     
  pass
@periodic_task(spacing=86400)
def ntp()
  pass 

那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

# 小明,中国人
@say_hello("china")
def xiaoming(): 
  pass
# jack,美国人
@say_hello("america")
def jack(): 
  pass

那我们如果实现这个装饰器,让其可以实现 传参 呢?

会比较复杂,需要两层嵌套。

def say_hello(contry):
    def wrapper(func):
        def deco(*args, **kwargs):
            if contry == "china":
                print("你好!")
            elif contry == "america":
                print('hello.')
            else:
                return

            # 真正执行函数的地方
            func(*args, **kwargs)
        return deco
    return wrapper

来执行一下

xiaoming()
print("------------")
jack()

看看输出结果。

你好!
------------
hello.

05. 高阶:不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call__ 和 __init__两个内置函数。
__init__ :接收被装饰函数
__call__ :实现装饰逻辑。

还是以日志打印这个简单的例子为例

class logger(object):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print("[INFO]: the function {func}() is running..."
            .format(func=self.func.__name__))
        return self.func(*args, **kwargs)

@logger
def say(something):
    print("say {}!".format(something))

say("hello")

执行一下,看看输出

[INFO]: the function say() is running...
say hello!

06. 高阶:带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。
__call__ :接收被装饰函数,实现装饰逻辑。

class logger(object):
    def __init__(self, level='INFO'):
        self.level = level

    def __call__(self, func): # 接受函数
        def wrapper(*args, **kwargs):
            print("[{level}]: the function {func}() is running..."
                .format(level=self.level, func=func.__name__))
            func(*args, **kwargs)
        return wrapper  #返回函数

@logger(level='WARNING')
def say(something):
    print("say {}!".format(something))

say("hello")

我们指定WARNING级别,运行一下,来看看输出。

[WARNING]: the function say() is running...
say hello!

07. 使用偏函数与类实现装饰器

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个例子已经接触过了)。

还有容易被人忽略的偏函数其实也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import time
import functools

class DelayFunc:
    def __init__(self,  duration, func):
        self.duration = duration
        self.func = func

    def __call__(self, *args, **kwargs):
        print(f'Wait for {self.duration} seconds...')
        time.sleep(self.duration)
        return self.func(*args, **kwargs)

    def eager_call(self, *args, **kwargs):
        print('Call without delay')
        return self.func(*args, **kwargs)

def delay(duration):
    """
    装饰器:推迟某个函数的执行。
    同时提供 .eager_call 方法立即执行
    """
    # 此处为了避免定义额外函数,
    # 直接使用 functools.partial 帮助构造 DelayFunc 实例
    return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

@delay(duration=2)
def add(a, b):
    return a+b

来看一下执行过程

>>> add    # 可见 add 变成了 Delay 的实例
<__main__.DelayFunc object at 0x107bd0be0>
>>> 
>>> add(3,5)  # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>>> 
>>> add.func # 实现实例方法
<function add at 0x107bef1e0>

08. 如何写能装饰类的装饰器?

用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。

以下便是我自己写的装饰器版的单例写法。

instances = {}

def singleton(cls):
    def get_instance(*args, **kw):
        cls_name = cls.__name__
        print('===== 1 ====')
        if not cls_name in instances:
            print('===== 2 ====')
            instance = cls(*args, **kw)
            instances[cls_name] = instance
        return instances[cls_name]
    return get_instance

@singleton
class User:
    _instance = None

    def __init__(self, name):
        print('===== 3 ====')
        self.name = name

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。

其实例化的过程,你可以参考我这里的调试过程,加以理解。

image

09. wraps 装饰器有啥用?

在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?

先来看一个例子

def wrapper(func):
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行func 和下边 decorator(func)  是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是inner_function

def wrapper(func):
    def inner_function():
        pass
    return inner_function

def wrapped():
    pass

print(wrapper(wrapped).__name__)
#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps

def wrapper(func):
    @wraps(func)
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
# wrapped

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

def wraps(wrapped,
          assigned = WRAPPER_ASSIGNMENTS,
          updated = WRAPPER_UPDATES):
    return partial(update_wrapper, wrapped=wrapped,
                   assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

from functools import update_wrapper

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                       '__annotations__')

def wrapper(func):
    def inner_function():
        pass

    update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)

10. 内置装饰器:property

以上,我们介绍的都是自定义的装饰器。

其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。

它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的

class Student(object):
    def __init__(self, name, age=None):
        self.name = name
        self.age = age

# 实例化
xiaoming = Student("小明")

# 添加属性
xiaoming.age=25

# 查询属性
xiaoming.age

# 删除属性
del xiaoming.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    def set_age(self, age):
        if not isinstance(age, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < age < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=age

    def get_age(self):
        return self._age

    def del_age(self):
        self._age = None


xiaoming = Student("小明")

# 添加属性
xiaoming.set_age(25)

# 查询属性
xiaoming.get_age()

# 删除属性
xiaoming.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。

# 赋值
xiaoming.age = 25

# 获取
xiaoming.age

那么这样的方式我们如何实现呢。请看下面的代码。

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    @property
    def age(self):
        return self._age

    @age.setter
    def age(self, value):
        if not isinstance(value, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < value < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=value

    @age.deleter
    def age(self):
        del self._age

xiaoming = Student("小明")

# 设置属性
xiaoming.age = 25

# 查询属性
xiaoming.age

# 删除属性
del xiaoming.age

@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter@age.deleter

@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。
@age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!