自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。
相对于感知器,
- 采用了f(z)=z的激活函数,属于连续函数。
- 代价函数为LMS函数,最小均方算法,Least mean square。

实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。
1 '''
2 Adaline classifier
3
4 created on 2019.9.14
5 author: vince
6 '''
7 import pandas
8 import math
9 import numpy
10 import logging
11 import random
12 import matplotlib.pyplot as plt
13
14 from sklearn.datasets import load_iris
15 from sklearn.model_selection import train_test_split
16 from sklearn.metrics import accuracy_score
17
18 '''
19 Adaline classifier
20
21 Attributes
22 w: ld-array = weights after training
23 l: list = number of misclassification during each iteration
24 '''
25 class Adaline:
26 def __init__(self, eta = 0.001, iter_num = 500, batch_size = 1):
27 '''
28 eta: float = learning rate (between 0.0 and 1.0).
29 iter_num: int = iteration over the training dataset.
30 batch_size: int = gradient descent batch number,
31 if batch_size == 1, used SGD;
32 if batch_size == 0, use BGD;
33 else MBGD;
34 '''
35
36 self.eta = eta;
37 self.iter_num = iter_num;
38 self.batch_size = batch_size;
39
40 def train(self, X, Y):
41 '''
42 train training data.
43 X:{array-like}, shape=[n_samples, n_features] = Training vectors,
44 where n_samples is the number of training samples and
45 n_features is the number of features.
46 Y:{array-like}, share=[n_samples] = traget values.
47 '''
48 self.w = numpy.zeros(1 + X.shape[1]);
49 self.l = numpy.zeros(self.iter_num);
50 for iter_index in range(self.iter_num):
51 for rand_time in range(X.shape[0]):
52 sample_index = random.randint(0, X.shape[0] - 1);
53 if (self.activation(X[sample_index]) == Y[sample_index]):
54 continue;
55 output = self.net_input(X[sample_index]);
56 errors = Y[sample_index] - output;
57 self.w[0] += self.eta * errors;
58 self.w[1:] += self.eta * numpy.dot(errors, X[sample_index]);
59 break;
60 for sample_index in range(X.shape[0]):
61 self.l[iter_index] += (Y[sample_index] - self.net_input(X[sample_index])) ** 2 * 0.5;
62 logging.info("iter %s: w0(%s), w1(%s), w2(%s), l(%s)" %
63 (iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));
64 if iter_index > 1 and math.fabs(self.l[iter_index - 1] - self.l[iter_index]) < 0.0001:
65 break;
66
67 def activation(self, x):
68 return numpy.where(self.net_input(x) >= 0.0 , 1 , -1);
69
70 def net_input(self, x):
71 return numpy.dot(x, self.w[1:]) + self.w[0];
72
73 def predict(self, x):
74 return self.activation(x);
75
76 def main():
77 logging.basicConfig(level = logging.INFO,
78 format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
79 datefmt = '%a, %d %b %Y %H:%M:%S');
80
81 iris = load_iris();
82
83 features = iris.data[:99, [0, 2]];
84 # normalization
85 features_std = numpy.copy(features);
86 for i in range(features.shape[1]):
87 features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std();
88
89 labels = numpy.where(iris.target[:99] == 0, -1, 1);
90
91 # 2/3 data from training, 1/3 data for testing
92 train_features, test_features, train_labels, test_labels = train_test_split(
93 features_std, labels, test_size = 0.33, random_state = 23323);
94
95 logging.info("train set shape:%s" % (str(train_features.shape)));
96
97 classifier = Adaline();
98
99 classifier.train(train_features, train_labels);
100
101 test_predict = numpy.array([]);
102 for feature in test_features:
103 predict_label = classifier.predict(feature);
104 test_predict = numpy.append(test_predict, predict_label);
105
106 score = accuracy_score(test_labels, test_predict);
107 logging.info("The accruacy score is: %s "% (str(score)));
108
109 #plot
110 x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
111 y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
112 plt.xlim(x_min, x_max);
113 plt.ylim(y_min, y_max);
114 plt.xlabel("width");
115 plt.ylabel("heigt");
116
117 plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10);
118
119 k = - classifier.w[1] / classifier.w[2];
120 d = - classifier.w[0] / classifier.w[2];
121
122 plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-");
123
124 plt.show();
125
126
127 if __name__ == "__main__":
128 main();
