Difference between df.reindex() and df.set_index() methods in pandas

為{幸葍}努か 提交于 2019-11-29 12:40:16

问题


I was confused by this, which is very simple but I didn't immediately find the answer on StackOverflow:

  • df.set_index('xcol') makes the column 'xcol' become the index (when it is a column of df).

  • df.reindex(myList), however, takes indexes from outside the dataframe, for example, from a list named myList that we defined somewhere else.

I hope this post clarifies it! Additions to this post are also welcome!


回答1:


You can see the difference on a simple example. Let's consider this dataframe:

df = pd.DataFrame({'a': [1, 2],'b': [3, 4]})
print (df)
   a  b
0  1  3
1  2  4

Indexes are then 0 and 1

If you use set_index with the column 'a' then the indexes are 1 and 2. If you do df.set_index('a').loc[1,'b'], you will get 3.

Now if you want to use reindex with the same indexes 1 and 2 such as df.reindex([1,2]), you will get 4.0 when you do df.reindex([1,2]).loc[1,'b']

What happend is that set_index has replaced the previous indexes (0,1) with (1,2) (values from column 'a') without touching the order of values in the column 'b'

df.set_index('a')
   b
a   
1  3
2  4

while reindex change the indexes but keeps the values in column 'b' associated to the indexes in the original df

df.reindex(df.a.values).drop('a',1) # equivalent to df.reindex(df.a.values).drop('a',1)
     b
1  4.0
2  NaN
# drop('a',1) is just to not care about column a in my example

Finally, reindex change the order of indexes without changing the values of the row associated to each index, while set_index will change the indexes with the values of a column, without touching the order of the other values in the dataframe




回答2:


Just to add, the undo to set_index would be reset_index method (more or less):

df = pd.DataFrame({'a': [1, 2],'b': [3, 4]})
print (df)

df.set_index('a', inplace=True)
print(df)

df.reset_index(inplace=True, drop=False)
print(df)

   a  b
0  1  3
1  2  4
   b
a   
1  3
2  4
   a  b
0  1  3
1  2  4



回答3:


Besides great answer from Ben. T, I would like to give one more example of how they are different when you use reindex and set_index to an index column

import pandas as pd
import numpy as np
testdf = pd.DataFrame({'a': [1, 3, 2],'b': [3, 5, 4],'c': [5, 7, 6]})

print(testdf)
print(testdf.set_index(np.random.permutation(testdf.index)))
print(testdf.reindex(np.random.permutation(testdf.index)))

Output:

  • With set_index, when index column (the first column) is shuffled, the order of other columns are kept intact
  • With reindex, the order of rows are changed accordingly to the shuffle of index column.
   a  b  c
0  1  3  5
1  3  5  7
2  2  4  6
   a  b  c
1  1  3  5
2  3  5  7
0  2  4  6
   a  b  c
2  2  4  6
1  3  5  7
0  1  3  5


来源:https://stackoverflow.com/questions/50741330/difference-between-df-reindex-and-df-set-index-methods-in-pandas

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!