一、问题描述
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Example 1:
Input: [1,3,4,2,2]
Output: 2
Example 2:
Input: [3,1,3,4,2] Output: 3
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than O(n2).
- There is only one duplicate number in the array, but it could be repeated more than once.
二、解题思路
使用set(因为涉及到查找,所以使用了底层是哈希表的unordered_set),遍历一遍数组,如果这个值在set中存在,直接return;不存在的话,添加到set中
三、代码实现(时间复杂度O(N))
#include<unordered_set>
class Solution {
public:
int findDuplicate(vector<int>& nums) {
unordered_set<int> result;
for(int num:nums){
if(result.find(num) != result.end()){
return num;
}else {
result.insert(num);
}
}
return -1;
}
};
说明其它的几种解题方法:
①排序后,判断当前元素和后一个是否相等,相等的话就找到了。但是这种方法的时间复杂度是:O(NlogN)
来源:https://blog.csdn.net/ixiaowei1993/article/details/100777324