Computing Hessian in tensorflow is quite easy:
x = tf.Variable([1., 1., 1.], dtype=tf.float32, name="x")
f = (x[0] + x[1] ** 2 + x[0] * x[1] + x[2]) ** 2
hessian = tf.hessians(f, x)
This correctly returns
[[ 8., 20., 4.],
[20., 34., 6.],
[ 4., 6., 2.]]
In my real case instead of using one single variable x
holding three values, I need to split it in two variables: x
(holding the first two) and y
(holding the last one).
x = tf.Variable([1., 1.], dtype=tf.float32, name="x")
y = tf.Variable([1.], dtype=tf.float32, name="y")
f = (x[0] + x[1] ** 2 + x[0] * x[1] + y) ** 2
I tried a naive
hessian = tf.hessians(f, [x, y])
but I get: [[ 8., 20.], [20., 34.]], [[2.]]
I also tried:
xy = tf.concat([x, y], axis=-1)
but when defining the hessian
hessian = tf.hessians(f, xy)
I get a very bad error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
510 as_ref=input_arg.is_ref,
--> 511 preferred_dtype=default_dtype)
512 except TypeError as err:
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors)
1174 if ret is None:
-> 1175 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1176
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
303 _ = as_ref
--> 304 return constant(v, dtype=dtype, name=name)
305
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
244 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 245 allow_broadcast=True)
246
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
282 value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 283 allow_broadcast=allow_broadcast))
284 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
453 if values is None:
--> 454 raise ValueError("None values not supported.")
455 # if dtype is provided, forces numpy array to be the type
ValueError: None values not supported.
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
524 observed = ops.internal_convert_to_tensor(
--> 525 values, as_ref=input_arg.is_ref).dtype.name
526 except ValueError as err:
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors)
1174 if ret is None:
-> 1175 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1176
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
303 _ = as_ref
--> 304 return constant(v, dtype=dtype, name=name)
305
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
244 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 245 allow_broadcast=True)
246
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
282 value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 283 allow_broadcast=allow_broadcast))
284 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
453 if values is None:
--> 454 raise ValueError("None values not supported.")
455 # if dtype is provided, forces numpy array to be the type
ValueError: None values not supported.
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-358-70bce7e5d400> in <module>
3 f = (x[0] + x[1] ** 2 + x[0] * x[1] + y) ** 2
4 xy = tf.concat([x, y], axis=-1)
----> 5 hessian = tf.hessians(f, xy)
~/venv3/lib/python3.7/site-packages/tensorflow/python/ops/gradients_impl.py in hessians(ys, xs, name, colocate_gradients_with_ops, gate_gradients, aggregation_method)
1405 for gradient, x in zip(_gradients, xs):
1406 # change shape to one-dimension without graph branching
-> 1407 gradient = array_ops.reshape(gradient, [-1])
1408
1409 # Declare an iterator and tensor array loop variables for the gradients.
~/venv3/lib/python3.7/site-packages/tensorflow/python/ops/gen_array_ops.py in reshape(tensor, shape, name)
7178 try:
7179 _, _, _op = _op_def_lib._apply_op_helper(
-> 7180 "Reshape", tensor=tensor, shape=shape, name=name)
7181 except (TypeError, ValueError):
7182 result = _dispatch.dispatch(
~/venv3/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
527 raise ValueError(
528 "Tried to convert '%s' to a tensor and failed. Error: %s" %
--> 529 (input_name, err))
530 prefix = ("Input '%s' of '%s' Op has type %s that does not match" %
531 (input_name, op_type_name, observed))
ValueError: Tried to convert 'tensor' to a tensor and failed. Error: None values not supported.
1
EDIT: Here is a more fleshed out solution, essentially the same but for an arbitrary number of variables. Also I have added the option of using Python or TensorFlow loops for the Jacobian. Note the code assumes all variables are 1D tensors.
from itertools import combinations, count
import tensorflow as tf
def jacobian(y, x, tf_loop=False):
# If the shape of Y is fully defined you can choose between a
# Python-level or TF-level loop to make the Jacobian matrix
# If the shape of Y is not fully defined you must use TF loop
# In both cases it is just a matter of stacking gradients for each Y
if tf_loop or y.shape.num_elements() is None:
i = tf.constant(0, dtype=tf.int32)
y_size = tf.size(y)
rows = tf.TensorArray(dtype=y.dtype, size=y_size, element_shape=x.shape)
_, rows = tf.while_loop(
lambda i, rows: i < y_size,
lambda i, rows: [i + 1, rows.write(i, tf.gradients(y[i], x)[0])],
[i, rows])
return rows.stack()
else:
return tf.stack([tf.gradients(y[i], x)[0]
for i in range(y.shape.num_elements())], axis=0)
def hessian_multivar(ys, xs, tf_loop=False):
# List of list of pieces of the Hessian matrix
hessian_pieces = [[None] * len(xs) for _ in xs]
# Hessians with respect to each x (diagonal pieces of the full Hessian)
for i, h in enumerate(tf.hessians(ys, xs)):
hessian_pieces[i][i] = h
# First-order derivatives
xs_grad = tf.gradients(ys, xs)
# Pairwise second order derivatives as Jacobian matrices
for (i1, (x1, g1)), (i2, (x2, g2)) in combinations(zip(count(), zip(xs, xs_grad)), 2):
# Derivates in both orders
hessian_pieces[i1][i2] = jacobian(g1, x2, tf_loop=tf_loop)
hessian_pieces[i2][i1] = jacobian(g2, x1, tf_loop=tf_loop)
# Concatenate everything together
return tf.concat([tf.concat(hp, axis=1) for hp in hessian_pieces], axis=0)
# Test it with three variables
with tf.Graph().as_default():
x = tf.Variable([1., 1.], dtype=tf.float32, name="x")
y = tf.Variable([1.], dtype=tf.float32, name="y")
z = tf.Variable([1., 1.], dtype=tf.float32, name="z")
f = (x[0] + x[1] ** 2 + x[0] * x[1] + y + x * y * z) ** 2
hessian = hessian_multivar(f, [x, y, z])
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(hessian))
Output:
[[26. 54. 30. 16. 4.]
[54. 90. 38. 6. 18.]
[30. 38. 16. 14. 14.]
[16. 6. 14. 2. 0.]
[ 4. 18. 14. 0. 2.]]
I'm not sure if there can be a "good" way of doing that with the current API. Obviously, you can compute the Hessian matrix elements by yourself... It is not very elegant and probably not the fastest solution either, but here is how it might be done in your example:
import tensorflow as tf
x = tf.Variable([1., 1.], dtype=tf.float32, name="x")
y = tf.Variable([1.], dtype=tf.float32, name="y")
f = (x[0] + x[1] ** 2 + x[0] * x[1] + y) ** 2
# X and Y pieces of Hessian
hx, hy = tf.hessians(f, [x, y])
# First-order X and Y derivatives
gx, gy = tf.gradients(f, [x, y])
# Remanining elements of Hessian can be computed as Jacobian matrices with
# X, Y and first-order derivatives. However TensorFlow does not implement this
# (https://github.com/tensorflow/tensorflow/issues/675)
# So you have to build it "by hand"
hxy = [tf.gradients(gx[i], y)[0] for i in range(x.shape.num_elements())]
hxy = tf.concat(hxy, axis=0)
# Here since Y has one element only it is easier
hyx, = tf.gradients(gy, x)
# Combine pieces of Hessian
h1 = tf.concat([hx, tf.expand_dims(hxy, 1)], axis=1)
h2 = tf.concat([tf.expand_dims(hyx, 0), hy], axis=1)
hessian = tf.concat([h1, h2], axis=0)
# Test it
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(hessian))
Output:
[[ 8. 20. 4.]
[20. 34. 6.]
[ 4. 6. 2.]]
来源:https://stackoverflow.com/questions/54112504/compute-hessian-with-respect-to-several-variables-in-tensorflow