I want to be able to write a lambda/Proc in my Ruby code, serialize it so that I can write it to disk, and then execute the lambda later. Sort of like...
x = 40
f = lambda { |y| x + y }
save_for_later(f)
Later, in a separate run of the Ruby interpreter, I want to be able to say...
f = load_from_before
z = f.call(2)
z.should == 42
Marshal.dump does not work for Procs. I know Perl has Data::Dump::Streamer, and in Lisp this is trivial. But is there a way to do it in Ruby? In other words, what would be the implementation of save
?_
for_
later
Edit: My answer below is nice, but it does not close over free variables (like x
) and serialize them along with the lambda. So in my example ...
x = 40
s = save_for_later { |y| x + y }
# => "lambda { |y|\n (x + y)\n}"
... the string output does not include a definition for x
. Is there a solution that takes this into account, perhaps by serializing the symbol table? Can you access that in Ruby?
Edit 2: I updated my answer to incorporate serializing local variables. This seems acceptable.
Use Ruby2Ruby
def save_for_later(&block)
return nil unless block_given?
c = Class.new
c.class_eval do
define_method :serializable, &block
end
s = Ruby2Ruby.translate(c, :serializable)
s.sub(/^def \S+\(([^\)]*)\)/, 'lambda { |\1|').sub(/end$/, '}')
end
x = 40
s = save_for_later { |y| x + y }
# => "lambda { |y|\n (x + y)\n}"
g = eval(s)
# => #<Proc:0x4037bb2c@(eval):1>
g.call(2)
# => 42
This is great, but it does not close over free variables (like x
) and serialize them along with the lambda.
To serialize variables also, you can iterate over local_variables
and serialize them as well. The problem, though, is that local_variables
from within save_for_later
accesses only c
and s
in the code above -- i.e. variables local to the serialization code, not the caller. So unfortunately, we must push the grabbing of local variables and their values to the caller.
Maybe this is a good thing, though, because in general, finding all free variables in a piece of Ruby code is undecidable. Plus, ideally we would also save global_variables
and any loaded classes and their overridden methods. This seems impractical.
Using this simple approach, you get the following:
def save_for_later(local_vars, &block)
return nil unless block_given?
c = Class.new
c.class_eval do
define_method :serializable, &block
end
s = Ruby2Ruby.translate(c, :serializable)
locals = local_vars.map { |var,val| "#{var} = #{val.inspect}; " }.join
s.sub(/^def \S+\(([^\)]*)\)/, 'lambda { |\1| ' + locals).sub(/end$/, '}')
end
x = 40
s = save_for_later(local_variables.map{ |v| [v,eval(v)] }) { |y| x + y }
# => "lambda { |y| _ = 40; x = 40;\n (x + y)\n}"
# In a separate run of Ruby, where x is not defined...
g = eval("lambda { |y| _ = 40; x = 40;\n (x + y)\n}")
# => #<Proc:0xb7cfe9c0@(eval):1>
g.call(2)
# => 42
# Changing x does not affect it.
x = 7
g.call(3)
# => 43
Use sourcify
This will work on Ruby 1.8 or 1.9.
def save_for_later(&block)
block.to_source
end
x = 40
s = save_for_later {|y| x + y }
# => "proc { |y| (x + y) }"
g = eval(s)
# => #<Proc:0x00000100e88450@(eval):1>
g.call(2)
# => 42
See my other answer for capturing free variables.
Update: Now you can also use the serializable_proc gem, which uses sourcify, and captures local, instance, class, and global variables.
Check out the answers to this question.
Ruby has the Marshal class that has a dump method that you can call.
Take a look here:
http://rubylearning.com/satishtalim/object_serialization.html
来源:https://stackoverflow.com/questions/199603/how-do-you-stringize-serialize-ruby-code