Tensorflow faster rcnn系列一

二次信任 提交于 2019-11-28 22:23:03

注意:本文主要是学习用,发现了一个在faster rcnn训练流程写的比较详细的博客。

大部分内容来自以下博客连接:https://blog.csdn.net/weixin_37203756/article/details/79926543

 

以下为正文:

第一点:首先要明白faster rcnn目录下都有哪些文件夹,都有什么用处。

 

文件夹:

data ----------------> 存放的是用于训练的数据集,一般我们用的都是voc2007的数据集,还有一个很重要的文件夹是imagenet_weights, 必不可少的,

这里存放的也就是VGG的模型,还有一个cache文件夹是随着训练的进行,用来存放数据的,为了下次加载数据方便。

expreiments------>下面有个scripts文件夹里面存放的是faster_rcnn_end2end.sh, 算是起始指令吧,我们是通过运行这个文件,加载参数来调用

其他各个文件的。

lib-------------------->该文件夹存放的东西很多,主要是一些python接口及运行的Log文件。所以说程序运行之前先make一下,关于里面各个作用,

下面我会根据流程一一讲解。

output--------------> 存放的是你的输出结果,你的训练结束后所训练好的模型。

tools---------------->里面存放的是训练、测试的加载起始文件。demo.py是一个简单的测试文件。

好了,关于各个文件的说明已经结束。

 

第二点:faster rcnn训练流程开始。

通过 ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG16 pascal_vo命令,调用tools/train_net.py

加载完参数后imdb=get_imdb(args.imdb_name)调用get_imdb()函数(该函数来自于lib/datasets/factory.py)

返回的是一个lmbda表达式,其实是通过pascal_voc()函数来创建imdb数据的,通过该表达式,进入了

pascal_voc函数,初始化了imdb数据,此时,数据加载完成。

-----> self._roidb_handler=self.gt_roidb, 并设置了gt_roidb

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!