The following code does not work.
import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan],columns=['x'])
xLower = df["x"].map(lambda x: x.lower())
How should I tweak it to get xLower = ['one','two',np.nan] ? Efficiency is important since the real data frame is huge.
use pandas vectorized string methods; as in the documentation:
these methods exclude missing/NA values automatically
.str.lower()
is the very first example there;
>>> df['x'].str.lower()
0 one
1 two
2 NaN
Name: x, dtype: object
Another possible solution, in case the column has not only strings but numbers too, is to use astype(str).str.lower()
or to_string(na_rep='')
because otherwise, given that a number is not a string, when lowered it will return NaN
, therefore:
import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan,2],columns=['x'])
xSecureLower = df['x'].to_string(na_rep='').lower()
xLower = df['x'].str.lower()
then we have:
>>> xSecureLower
0 one
1 two
2
3 2
Name: x, dtype: object
and not
>>> xLower
0 one
1 two
2 NaN
3 NaN
Name: x, dtype: object
edit:
if you don't want to lose the NaNs, then using map will be better, (from @wojciech-walczak, and @cs95 comment) it will look something like this
xSecureLower = df['x'].map(lambda x: x.lower() if isinstance(x,str) else x)
A possible solution:
import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan],columns=['x'])
xLower = df["x"].map(lambda x: x if type(x)!=str else x.lower())
print (xLower)
And a result:
0 one
1 two
2 NaN
Name: x, dtype: object
Not sure about the efficiency though.
Pandas >= 0.25: Remove Case Distinctions with str.casefold
Starting from v0.25, I recommend using the "vectorized" string method str.casefold
if you're dealing with unicode data (it works regardless of string or unicodes):
s = pd.Series(['lower', 'CAPITALS', np.nan, 'SwApCaSe'])
s.str.casefold()
0 lower
1 capitals
2 NaN
3 swapcase
dtype: object
Also see related GitHub issue GH25405.
casefold
lends itself to more aggressive case-folding comparison. It also handles NaNs gracefully (just as str.lower
does).
But why is this better?
The difference is seen with unicodes. Taking the example in the python str.casefold
docs,
Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter
'ß'
is equivalent to"ss"
. Since it is already lowercase,lower()
would do nothing to'ß'
;casefold()
converts it to"ss"
.
Compare the output of lower
for,
s = pd.Series(["der Fluß"])
s.str.lower()
0 der fluß
dtype: object
Versus casefold
,
s.str.casefold()
0 der fluss
dtype: object
Also see Python: lower() vs. casefold() in string matching and converting to lowercase.
you can try this one also,
df= df.applymap(lambda s:s.lower() if type(s) == str else s)
May be using List comprehension
import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan],columns=['Name']})
df['Name'] = [str(i).lower() for i in df['Name']]
print(df)
copy your Dataframe column and simply apply
df=data['x'] newdf=df.str.lower()
来源:https://stackoverflow.com/questions/22245171/how-to-lowercase-a-pandas-dataframe-string-column-if-it-has-missing-values