How to lowercase a pandas dataframe string column if it has missing values?

試著忘記壹切 提交于 2019-11-28 22:18:02

use pandas vectorized string methods; as in the documentation:

these methods exclude missing/NA values automatically

.str.lower() is the very first example there;

>>> df['x'].str.lower()
0    one
1    two
2    NaN
Name: x, dtype: object

Another possible solution, in case the column has not only strings but numbers too, is to use astype(str).str.lower() or to_string(na_rep='') because otherwise, given that a number is not a string, when lowered it will return NaN, therefore:

import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan,2],columns=['x']) 
xSecureLower = df['x'].to_string(na_rep='').lower()
xLower = df['x'].str.lower()

then we have:

>>> xSecureLower
0    one
1    two
2   
3      2
Name: x, dtype: object

and not

>>> xLower
0    one
1    two
2    NaN
3    NaN
Name: x, dtype: object

edit:

if you don't want to lose the NaNs, then using map will be better, (from @wojciech-walczak, and @cs95 comment) it will look something like this

xSecureLower = df['x'].map(lambda x: x.lower() if isinstance(x,str) else x)
Wojciech Walczak

A possible solution:

import pandas as pd
import numpy as np

df=pd.DataFrame(['ONE','Two', np.nan],columns=['x']) 
xLower = df["x"].map(lambda x: x if type(x)!=str else x.lower())
print (xLower)

And a result:

0    one
1    two
2    NaN
Name: x, dtype: object

Not sure about the efficiency though.

Pandas >= 0.25: Remove Case Distinctions with str.casefold

Starting from v0.25, I recommend using the "vectorized" string method str.casefold if you're dealing with unicode data (it works regardless of string or unicodes):

s = pd.Series(['lower', 'CAPITALS', np.nan, 'SwApCaSe'])
s.str.casefold()

0       lower
1    capitals
2         NaN
3    swapcase
dtype: object

Also see related GitHub issue GH25405.

casefold lends itself to more aggressive case-folding comparison. It also handles NaNs gracefully (just as str.lower does).

But why is this better?

The difference is seen with unicodes. Taking the example in the python str.casefold docs,

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter 'ß' is equivalent to "ss". Since it is already lowercase, lower() would do nothing to 'ß'; casefold() converts it to "ss".

Compare the output of lower for,

s = pd.Series(["der Fluß"])
s.str.lower()

0    der fluß
dtype: object

Versus casefold,

s.str.casefold()

0    der fluss
dtype: object

Also see Python: lower() vs. casefold() in string matching and converting to lowercase.

you can try this one also,

df= df.applymap(lambda s:s.lower() if type(s) == str else s)

May be using List comprehension

import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan],columns=['Name']})
df['Name'] = [str(i).lower() for i in df['Name']] 

print(df)

copy your Dataframe column and simply apply

df=data['x'] newdf=df.str.lower()

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!