题意:有一个n * m的棋盘,你初始在点(1, 1),你需要去点(n, m)。你初始有s分,在这个棋盘上有k个点,经过一次这个点分数就会变为s / 2(向上取整),问从起点到终点的分数的数学期望是多少?
思路:按照套路,先把这k个点按照pair的方式进行排序,设dp[i][j]为从起点到点i之前经过了至少j个减分点,到点i的数学期望。那么所有在它之前的可以向它转移的点向它转移。那么dp[i][j] = Σ(dp[u][j - 1] - dp[u][j]) * g(u, i)。其中g(u, i)是u, i之间没有限制条件的走法数目,用组合数学的方法计算即可。这样相当于是前面恰好走过j个点 + 可能走过大于一个点的方式转移过来,这样可以保证计数的不重不漏。
代码:
#include <bits/stdc++.h> #define INF 0x3f3f3f3f #define db double #define LL long long #define pii pair<int, int> using namespace std; const int maxn = 200010; const LL mod = 1e9 + 7; LL dp[2010][40]; pii a[2010]; LL v[maxn], inv[maxn]; LL qpow(LL x, LL y) { LL ans = 1; for (; y; y >>= 1) { if(y & 1) ans = (ans * x) % mod; x = (x * x) % mod; } return ans; } void init(int n) { v[0] = 1; for (int i = 1; i <= n; i++) { v[i] = (v[i - 1] * i) % mod; } inv[n] = qpow(v[n], mod - 2); for (int i = n - 1; i >= 0; i--) { inv[i] = (inv[i + 1] * (i + 1)) % mod; } } LL C(LL n, LL m) { return (((v[n] * inv[m]) % mod) * inv[n - m]) % mod; } LL cal(int x, int y) { LL tmp = abs(a[y].first - a[x].first), tmp1 = tmp + (a[y].second - a[x].second); return C(tmp1, tmp); } LL b[50]; int main() { int n, m, k, t; scanf("%d%d%d%d", &n, &m, &k, &t); init(n + m); for (int i = 1; i <= k; i++) { scanf("%d%d", &a[i].first, &a[i].second); } int lim = 0; while(t > 1) { b[++lim] = t; t = (t + 1) / 2; } b[++lim] = 1; b[lim + 1] = 1; sort(a + 1, a + 1 + k); k++; a[k] = make_pair(n, m); for (int i = 1; i <= k; i++) { dp[i][0] = C(a[i].first + a[i].second - 2, a[i].first - 1); } LL ans = 0; for (int j = 1; j <= lim; j++) { for (int i = 1; i <= k; i++) { for (int t = 1; t < i; t++) { if(a[t].first <= a[i].first && a[t].second <= a[i].second) { LL tmp1 = (dp[t][j - 1] - dp[t][j] + mod) % mod; LL tmp2 = cal(t, i); assert(tmp1 >= 0); assert(tmp2 >= 0); dp[i][j] += (tmp1 * tmp2) % mod; dp[i][j] %= mod; } } } } for (int i = 0; i <= lim; i++) { ans = (ans + (((dp[k][i] - dp[k][i + 1] + mod) % mod) * b[i + 1]) % mod) % mod; } ans = (ans * qpow(C(n + m - 2, n - 1), mod - 2)) % mod; printf("%lld\n", ans); }