How to Get Dependency Parse Output from SyntaxNet

前提是你 提交于 2019-11-28 21:39:22

Passing --arg_prefix brain_parser to the parser_eval.py should do the trick. But this requires the tagged output to be fed as input.

Here's an example where the first pass tags the words and the second pass resolves dependencies:

echo 'The quick brown fox ran over the lazy dog.' | bazel-bin/syntaxnet/parser_eval \
--input stdin \
--output stdout-conll \
--model syntaxnet/models/parsey_mcparseface/tagger-params \
--task_context syntaxnet/models/parsey_mcparseface/context.pbtxt \
--hidden_layer_sizes 64 \
--arg_prefix brain_tagger \
--graph_builder structured \
--slim_model \
--batch_size 1024 | bazel-bin/syntaxnet/parser_eval \
--input stdin-conll \
--output stdout-conll \
--hidden_layer_sizes 512,512 \
--arg_prefix brain_parser \
--graph_builder structured \
--task_context syntaxnet/models/parsey_mcparseface/context.pbtxt \
--model_path syntaxnet/models/parsey_mcparseface/parser-params \
--slim_model --batch_size 1024

This generates the following output:

1       The     _       DET     DT      _       4       det     _       _
2       quick   _       ADJ     JJ      _       4       amod    _       _
3       brown   _       ADJ     JJ      _       4       amod    _       _
4       fox     _       NOUN    NN      _       5       nsubj   _       _
5       ran     _       VERB    VBD     _       0       ROOT    _       _
6       over    _       ADP     IN      _       5       prep    _       _
7       the     _       DET     DT      _       9       det     _       _
8       lazy    _       ADJ     JJ      _       9       amod    _       _
9       dog     _       NOUN    NN      _       6       pobj    _       _
10      .       _       .       .       _       5       punct   _       _
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!