数据格式如下:电表标签+每15min的用电量(度)
MT_001:0;MT_002:5;MT_003:0;MT_004:40;MT_005:20;
MT_001:0;MT_002:5;MT_003:0;MT_004:30;MT_005:15;
MT_001:0;MT_002:4;MT_003:0;MT_004:30;MT_005:13;
MT_001:0;MT_002:4;MT_003:0;MT_004:31;MT_005:14;
MT_001:0;MT_002:4;MT_003:0;MT_004:29;MT_005:13;
实际数据是有370个电表,一个月的数据采样周期15min,可以到这里下载:https://download.csdn.net/download/Ahuuua/11996754
目标:统计每个电表最近一小时的耗电量
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import scala.Tuple2;
import java.util.*;
public class SparkStreamingConsumer {
public static void main(String[] args) throws InterruptedException {
SparkConf conf = new SparkConf();
conf.setAppName("kafkaSpark");
conf.setMaster("local[4]");
//创建Spark流应用上下文,batch设为15min
JavaStreamingContext streamingContext = new JavaStreamingContext(conf,new Duration(15*60*1000));
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "b2:9092,b3:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "g6");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
Collection<String> topics = Arrays.asList("energylogforsparkstreaming");
final JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)
);
//压扁
JavaDStream<String> wordsDS = stream.flatMap(new FlatMapFunction<ConsumerRecord<String,String>, String>() {
public Iterator<String> call(ConsumerRecord<String, String> r) throws Exception {
String value = r.value();
List<String> list = new ArrayList<String>();
String[] arr = value.split(";");
for (String s : arr) {
list.add(s);
}
return list.iterator();
}
});
//映射成元组,(电表名称,近15min用电量)
JavaPairDStream<String,Integer> pairDS = wordsDS.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
//电表:用电量
String[] arr=s.split(":");
return new Tuple2<String,Integer>(arr[0],Integer.parseInt(arr[1]));
}
}) ;
//聚合reduceByKeyAndWindow(电表名称,近一小时用电量),窗口长度设为1小时,滑动间隔设为15min
JavaPairDStream<String,Integer> countDS = pairDS.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
},new Duration(60*60*1000),new Duration(15*60*1000));
//打印
countDS.print();
streamingContext.start();
streamingContext.awaitTermination();
streamingContext.stop();
}
}
依赖如下(有些不需要):
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.17</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
测试:
1. 缩小时间间隔:
批次batch设为了new Duration(2*1000),窗口和滑动间隔设为了new Duration(16*1000),new Duration(6*1000)
2. 开一个kafka生产者
kafka-console-producer.sh --broker-list b2:9092 --topic energylogforsparkstreaming
3. 开启测试程序,kafka生产数据
$ kafka-console-producer.sh --broker-list b2:9092 --topic energylogforsparkstreaming
MT_001:0;MT_002:5;MT_003:0;MT_004:40;MT_005:20;
MT_001:0;MT_002:5;MT_003:0;MT_004:30;MT_005:15;
MT_001:0;MT_002:4;MT_003:0;MT_004:30;MT_005:13;
MT_001:0;MT_002:4;MT_003:0;MT_004:31;MT_005:14;
输出如下:
-------------------------------------------
Time: 1574670736000 ms
-------------------------------------------
-------------------------------------------
Time: 1574670742000 ms
-------------------------------------------
(MT_004,40)
(MT_001,0)
(MT_005,20)
(MT_002,5)
(MT_003,0)
-------------------------------------------
Time: 1574670748000 ms
-------------------------------------------
(MT_004,70)
(MT_001,0)
(MT_005,35)
(MT_002,10)
(MT_003,0)
-------------------------------------------
Time: 1574670754000 ms
-------------------------------------------
(MT_004,60)
(MT_001,0)
(MT_005,28)
(MT_002,9)
(MT_003,0)
-------------------------------------------
Time: 1574670760000 ms
-------------------------------------------
(MT_004,61)
(MT_001,0)
(MT_005,27)
(MT_002,8)
(MT_003,0)
来源:CSDN
作者:Ahuuua
链接:https://blog.csdn.net/Ahuuua/article/details/103239786