问题
How do I get the index column name in python pandas? Here\'s an example dataframe:
Column 1
Index Title
Apples 1
Oranges 2
Puppies 3
Ducks 4
What I\'m trying to do is get/set the dataframe index title. Here is what i tried:
import pandas as pd
data = {\'Column 1\' : [1., 2., 3., 4.],
\'Index Title\' : [\"Apples\", \"Oranges\", \"Puppies\", \"Ducks\"]}
df = pd.DataFrame(data)
df.index = df[\"Index Title\"]
del df[\"Index Title\"]
print df
Anyone know how to do this?
回答1:
You can just get/set the index via its name
property
In [7]: df.index.name
Out[7]: 'Index Title'
In [8]: df.index.name = 'foo'
In [9]: df.index.name
Out[9]: 'foo'
In [10]: df
Out[10]:
Column 1
foo
Apples 1
Oranges 2
Puppies 3
Ducks 4
回答2:
You can use rename_axis, for removing set to None
:
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title')
print (df)
Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
None
The new functionality works well in method chains.
df = df.rename_axis('foo')
print (df)
Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
You can also rename column names with parameter axis
:
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title').rename_axis('Col Name', axis=1)
print (df)
Col Name Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
Col Name
print df.rename_axis('foo').rename_axis("bar", axis="columns")
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print df.rename_axis('foo').rename_axis("bar", axis=1)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
From version pandas 0.24.0+
is possible use parameter index
and columns
:
df = df.rename_axis(index='foo', columns="bar")
print (df)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
Removing index and columns names means set it to None
:
df = df.rename_axis(index=None, columns=None)
print (df)
Column 1
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
If MultiIndex
in index only:
mux = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)),
index=mux,
columns=list('ABCDEF')).rename_axis('col name', axis=1)
print (df)
col name A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
print (df.index.name)
None
print (df.columns.name)
col name
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis('baz', axis=1)
print (df2)
baz A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis(index=('foo','bar'), columns='baz')
print (df2)
baz A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
Removing index and columns names means set it to None
:
df2 = df.rename_axis(index=(None,None), columns=None)
print (df2)
A B C D E F
Apples a 6 9 9 5 4 6
Oranges b 2 6 7 4 3 5
Puppies c 6 3 6 3 5 1
Ducks d 4 9 1 3 0 5
For MultiIndex
in index and columns is necessary working with .names
instead .name
and set by list or tuples:
mux1 = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
mux2 = pd.MultiIndex.from_product([list('ABC'),
list('XY')],
names=['col name 1','col name 2'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)), index=mux1, columns=mux2)
print (df)
col name 1 A B C
col name 2 X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
Plural is necessary for check/set values:
print (df.index.name)
None
print (df.columns.name)
None
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name 1', 'col name 2']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name 1 A B C
col name 2 X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(('baz','bak'), axis=1)
print (df2)
baz A B C
bak X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(index=('foo','bar'), columns=('baz','bak'))
print (df2)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
Removing index and columns names means set it to None
:
df2 = df.rename_axis(index=(None,None), columns=(None,None))
print (df2)
A B C
X Y X Y X Y
Apples a 2 0 2 5 2 0
Oranges b 1 7 5 5 4 8
Puppies c 2 4 6 3 6 5
Ducks d 9 6 3 9 7 0
And @Jeff solution:
df.index.names = ['foo','bar']
df.columns.names = ['baz','bak']
print (df)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 3 4 7 3 3 3
Oranges b 1 2 5 8 1 0
Puppies c 9 6 3 9 6 3
Ducks d 3 2 1 0 1 0
回答3:
df.index.name
should do the trick.
Python has a dir
function that let's you query object attributes. dir(df.index)
was helpful here.
回答4:
Use df.index.rename('foo', inplace=True)
to set the index name.
Seems this api is available since pandas 0.13.
回答5:
If you do not want to create a new row but simply put it in the empty cell then use:
df.columns.name = 'foo'
Otherwise use:
df.index.name = 'foo'
回答6:
df.columns.values
also give us the column names
回答7:
The solution for multi-indexes is inside jezrael's cyclopedic answer, but it took me a while to find it so I am posting a new answer:
df.index.names
gives the names of a multi-index (as a Frozenlist).
来源:https://stackoverflow.com/questions/18022845/pandas-index-column-title-or-name