食物链
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 108628 | Accepted: 32960 |
Description
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3题目中文不解释虽然我wa了三四发,T了一发(卡scanf),但是感觉这题想明白了还是好写,纸上画画就会了,注意d[]数组在存数的时候别忘记(d[]+3)%3,因为我要保证d只能是三个数,1,2,0;1代表fa[i]吃i2反过来0代表二者同种族
#include <iostream> #include <cmath> #include <cstdio> #include <cstring> #include <string> #include <map> #include <iomanip> #include <algorithm> #include <queue> #include <stack> #include <set> #include <vector> //const int maxn = 1e5+5; #define ll long long ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} #define MAX INT_MAX #define FOR(i,a,b) for( int i = a;i <= b;++i) #define bug cout<<"--------------"<<endl using namespace std; int fa[51000],d[51000]; int cnt,n,m; int Find(int x) { //bug; if(x == fa[x]) return x; int root = Find(fa[x]); d[x] = (d[x] + d[fa[x]]+3)%3; return fa[x] = root; } int main() { ios::sync_with_stdio(false); scanf("%d%d",&n,&m); FOR(i,1,n) fa[i] = i; FOR(i,1,m) { int k,x,y; scanf("%d%d%d",&k,&x,&y); if(x > n || y > n) {cnt++;continue;} if(k==2 && x==y){cnt++;continue;} int fx = Find(x); int fy = Find(y); if(fx == fy) { int temp = d[x] - d[y]; if(k == 1 && temp != 0) { cnt++; continue; } else if(k == 2 ) { if((d[x]-d[y]+3)%3 !=2 ) cnt++; } } else { if(k == 1) { fa[fy] = fx; d[fy] = (d[x] - d[y]+3)%3; } else if(k == 2) { fa[fy] = fx; d[fy] = (d[x] - d[y] + 1+3)%3; } } } printf("%d\n",cnt); }