python 文本相似度计算

荒凉一梦 提交于 2019-11-28 10:46:38

 

 

参考:python文本相似度计算

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import jieba
from gensim import  corpora,models,similarities
import codecs


def cut_words(file):
    with open(file, 'r',encoding="utf-8") as f:
        text = f.read()
        words = jieba.lcut(text)
        # print(len(words),words) #查看分词结果
    return words

def drop_Disable_Words(cut_res,stopwords):
    res = []
    for word in cut_res:
        if word in stopwords or word =="\n" or word =="\u3000":
            continue
        res.append(word)
    #print(len(res),res) #查看去停用词结果
    return res

def read_stop_word(file_path):
    file = file_path
    stopwords = codecs.open(file,'r',encoding='utf8').readlines()
    stopwords = [ w.strip() for w in stopwords ]
    return stopwords


#读取原始语料、停用词表
files = ['file1.txt',
        'file2.txt',
        'file3.txt'
        ]
stopwords = read_stop_word("stop_word.txt")

#分词、去停用词
corpus = []
for file in files:
    #分词
    cut_res = cut_words(file)
    #去停用词
    res = drop_Disable_Words(cut_res,stopwords)
    corpus.append(res)
# print(len(corpus))


#建立词袋模型
dictionary = corpora.Dictionary(corpus)
doc_vectors = [dictionary.doc2bow(text) for text in corpus]
# print(len(doc_vectors),doc_vectors)
#####################################################################
# print("文档数目:")
# print (dictionary.num_docs)
#
# print("所有词的个数:")
# print(dictionary.num_pos )
#
# print("单词在文档中出现的次数:")
# print(dictionary.dfs )
#
# print("字典,{单词id:对应的词}")
# print((dictionary.id2token))
#
# print ("字典,{词:对应的单词id}")
# print((dictionary.token2id))


# print ("每个文件中不重复词个数的和")
# print(dictionary.num_nnz)  #每个文件中不重复词个数的和
##########################################################################


tfidf = models.TfidfModel(doc_vectors)
tfidf_vectors = tfidf[doc_vectors]
print(len(tfidf_vectors))
print(len(tfidf_vectors[0]))
print(tfidf_vectors[0])

#建立TF-IDF模型
def TF_IDF(tfidf_vectors,doc_vectors):
    index = similarities.MatrixSimilarity(tfidf_vectors)
    sims = index[doc_vectors[0]]
    print (list(enumerate(sims)))
#建立LSI模型
def LSI(tfidf_vectors,dictionary,doc_vectors,theme_num):
    lsi = models.LsiModel(tfidf_vectors, id2word=dictionary, num_topics=theme_num)
    lsi_vector = lsi[tfidf_vectors]
    query_lsi = lsi[doc_vectors[0]]
    index = similarities.MatrixSimilarity(lsi_vector)
    sims = index[query_lsi]
    print(list(enumerate(sims)))

#使用LSI模型计算相似度
LSI(tfidf_vectors,dictionary,doc_vectors,2)

#使用TF-IDF模型计算相似度
TF_IDF(tfidf_vectors,doc_vectors)

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!