AUC指标

一笑奈何 提交于 2019-11-28 08:33:57

AUC数值即为ROC曲线下的面积。ROC曲线从0点开始上升越快,说明模型错分正样本的比例越小,模型对正样本识别的能力越强。在ROC曲线的基础上,抛开阈值的调节,ROC曲线下半部分的面积值就是AUC值。AUC值介于0到1之间,是一种概率值。本质上AUC是在模型预测的数据集中,比较正负样本,评估正样本分数排在负样本之上的能力,进而估计模型对正样本预测的可信程度。

由于AUC指标能较好地概括不平衡类别的样本集下分类器的性能,因此成为很多机器学习系统中的最终判定标准。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!