I'm using a TreeSet<Integer>
and I'd quite simply like to find the index of a number in the set. Is there a nice way to do this that actually makes use of the O(log(n)) complexity of binary trees?
(If not, what should I do, and does anyone know why not? I'm curious why such a class would be included in Java without something like a search function.)
As @Yrlec points out set.headSet(element).size
will returns 0 though there is no this element in the set. So we'd better check:
return set.contains(element)? set.headSet(element).size(): -1;
Here is a test case to show the problem:
public static void main(String args[]){
TreeSet<Integer> set = new TreeSet<>();
set.add(4);
set.add(2);
set.add(3);
set.add(1);
System.out.println(set.headSet(1).size());//0
System.out.println(set.headSet(2).size());//1
System.out.println(set.headSet(3).size());//2
System.out.println(set.headSet(4).size());//3
System.out.println(set.headSet(-1).size());//0!!Caution!,retusn 0 though it does not exits
}
I poked around TreeSet and its interfaces for a while, and the best way I found to get the index of an element is:
set.headSet(element).size()
headSet(element)
returns the sub-TreeSet
of elements less than its argument, so the size of this set will be the index of the element in question. A strange solution indeed.
I had the same problem. So I took the source code of java.util.TreeMap and wrote IndexedTreeMap. It implements my own IndexedNavigableMap:
public interface IndexedNavigableMap<K, V> extends NavigableMap<K, V> {
K exactKey(int index);
Entry<K, V> exactEntry(int index);
int keyIndex(K k);
}
The implementation is based on updating node weights in the red-black tree when it is changed. Weight is the number of child nodes beneath a given node, plus one - self. For example when a tree is rotated to the left:
private void rotateLeft(Entry<K, V> p) {
if (p != null) {
Entry<K, V> r = p.right;
int delta = getWeight(r.left) - getWeight(p.right);
p.right = r.left;
p.updateWeight(delta);
if (r.left != null) {
r.left.parent = p;
}
r.parent = p.parent;
if (p.parent == null) {
root = r;
} else if (p.parent.left == p) {
delta = getWeight(r) - getWeight(p.parent.left);
p.parent.left = r;
p.parent.updateWeight(delta);
} else {
delta = getWeight(r) - getWeight(p.parent.right);
p.parent.right = r;
p.parent.updateWeight(delta);
}
delta = getWeight(p) - getWeight(r.left);
r.left = p;
r.updateWeight(delta);
p.parent = r;
}
}
updateWeight simply updates weights up to the root:
void updateWeight(int delta) {
weight += delta;
Entry<K, V> p = parent;
while (p != null) {
p.weight += delta;
p = p.parent;
}
}
And when we need to find the element by index here is the implementation that uses weights:
public K exactKey(int index) {
if (index < 0 || index > size() - 1) {
throw new ArrayIndexOutOfBoundsException();
}
return getExactKey(root, index);
}
private K getExactKey(Entry<K, V> e, int index) {
if (e.left == null && index == 0) {
return e.key;
}
if (e.left == null && e.right == null) {
return e.key;
}
if (e.left != null && e.left.weight > index) {
return getExactKey(e.left, index);
}
if (e.left != null && e.left.weight == index) {
return e.key;
}
return getExactKey(e.right, index - (e.left == null ? 0 : e.left.weight) - 1);
}
Also comes in very handy finding the index of a key:
public int keyIndex(K key) {
if (key == null) {
throw new NullPointerException();
}
Entry<K, V> e = getEntry(key);
if (e == null) {
throw new NullPointerException();
}
if (e == root) {
return getWeight(e) - getWeight(e.right) - 1;//index to return
}
int index = 0;
int cmp;
if (e.left != null) {
index += getWeight(e.left);
}
Entry<K, V> p = e.parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
while (p != null) {
cmp = cpr.compare(key, p.key);
if (cmp > 0) {
index += getWeight(p.left) + 1;
}
p = p.parent;
}
} else {
Comparable<? super K> k = (Comparable<? super K>) key;
while (p != null) {
if (k.compareTo(p.key) > 0) {
index += getWeight(p.left) + 1;
}
p = p.parent;
}
}
return index;
}
I will implement IndexedTreeSet soon, in the meanwhile you can use the key set from IndexedTreeMap.
Update: IndexedTreeSet is implemented now.
You can find the result of this work at http://code.google.com/p/indexed-tree-map/
The TreeSet
class in Java doesn't have the ability to find the index of a number in the set. For that, you'd have to provide your own implementation - it is a Red-Black tree under the hood, and it can be augmented to support the index operation. Take a look at the OS-RANK
procedure in the chapter "Augmenting Data Structures" of "Introduction to Algorithms", it's precisely what you're asking for.
here show my function:
//FUNCTION FOR GIVE A STRING POSITION INTO TREESET
private static void get_posistion(TreeSet abre, String codig) {
Iterator iterator;
iterator = abre.iterator();
int cont = 0;
String prova = "";
while (iterator.hasNext()) {
prova = iterator.next().toString();
if (codig.equals(prova)) {
System.out.println(cont);
} else {
cont++;
}
}
}
来源:https://stackoverflow.com/questions/7911621/how-to-find-the-index-of-an-element-in-a-treeset