题目详情
一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能移走起点和终点的岩石)。
输入描述
输入文件第一行包含三个整数 L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。接下来 N 行,每行一个整数,第 i 行的整数 Di(0 < Di < L)表示第 i块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。输出描述
输出文件只包含一个整数,即最短跳跃距离的最大值。
输入 25 5 2 2 11 14 17 21 输出 4 说明 将与起点距离为 2 和14 的两个岩石移走后,最短的跳跃距离为 4(从与起点距离17的岩石跳到距离 21的岩石,或者从距离 21 的岩石跳到终点)。 备注: 对于20%的数据,0 ≤ M ≤ N ≤ 10。 对于50%的数据,0 ≤ M ≤ N ≤ 100。 对于100%的数据,0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000。
#include<bits/stdc++.h> using namespace std; const int N=50010; int l,n,m; int d[N]; bool check(int mid) { int cnt=0,last=0; for(int i=1;i<=n;i++) { if(d[i]-last<mid) cnt++; else last=d[i]; } return cnt<=m; } int main() { scanf("%d%d%d",&l,&n,&m); for(int i=1;i<=n;i++) { //cin>>d[i]; scanf("%d",&d[i]); } n++; d[n]=l; n--; int l=1,r=1000000000; while (l < r) { int mid = (l + r + 1) /2; if (check(mid)) l = mid; else r = mid - 1; } printf("%d\n",r); return 0; }
补充二分模板:
二分模板一共有两个,分别适用于不同情况。
算法思路:假设目标值在闭区间[l, r]中, 每次将区间长度缩小一半,当l = r时,我们就找到了目标值。
版本1
一:
当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1;,计算mid时不需要加1。
int bsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; else l = mid + 1; } return l; }
二:
当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。
int bsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }