支持向量机分类原理概述

自古美人都是妖i 提交于 2019-11-28 05:23:48

支持向量机分类原理概述

支持向量机(SVMs)是一组相关的监督学习方法,用于分析数据和识别模式,用于分类和回归分析。

最初的SVM算法是由弗拉基米尔。弗尼克发明的,目前的标准化身(软利润)是由科琳娜科尔特斯和弗拉迪米尔。瓦尼克提出的。

支持向量机在高或无限维度空间中构造超平面或超平面,可用于分类、回归或其他任务。

超平面与任何类最近的训练数据点之间的距离最大,因此,这是一个很好的分离,因为一般来说,越大的边界越低,分类器的泛化误差就越低。

我们想要找到最大的边缘超平面,它把有yi=1的点和yi=-1分开。任何超平面都可以写成满足点的集合。

我们想要选择w和b来最大化边缘,或者在平行的超平面之间的距离,在分离数据的同时,尽可能地分开。

 

 

 

 

 

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!