问题
I have several dataframes with identical shape/types, but slightly different numeric values. I can easily produce a new dataframe with the mean of all input dataframes via:
df = pd.concat([input_dataframes])
df = df.groupby(df.index).mean()
I want to do the same with harmonic mean (probably the scipy.stats.hmean function). I have attempted to do this using:
.groupby(df.index).apply(scipy.stats.hmean)
But this alters the structure of the dataframe. Is there a better way to do this, or do I need to use a more lengthly/manual implementation?
To illustrate :
df_input1:
'a' 'b' 'c'
'x' 1 1 2
'y' 2 2 4
'z' 3 3 6
df_input2:
'a' 'b' 'c'
'x' 2 2 4
'y' 3 3 6
'z' 4 4 8
desired output (but w/ hmean):
'a' 'b' 'c'
'x' 1.5 1.5 3
'y' 2.5 2.5 5
'z' 3.5 3.5 7
回答1:
Create a pandas Panel, and apply the harmonic mean function over the 'item' axis.
Example with your dataframes df1
and df2
:
import pandas as pd
from scipy import stats
d = {'1':df1,'2':df2}
pan = pd.Panel(d)
pan.apply(axis='items',func=stats.hmean)
yields:
'a' 'b' 'c'
'x' 1.333333 1.333333 2.666667
'y' 2.400000 2.400000 4.800000
'z' 3.428571 3.428571 6.857143
来源:https://stackoverflow.com/questions/39281575/efficient-function-to-find-harmonic-mean-across-different-pandas-dataframes