问题
I have a Dask Dataframe for which I would like to compute skewness for a list of columns and if this skewness exceeds a certain threshold, I correct it using log transformation. I am wondering whether there is a more efficient way of making correct_skewness()
function work on multiple columns in parallel by removing the for loop in the correct_skewness()
function below:
import dask
import dask.array as da
from scipy import stats
# Create a dataframe
df = dask.datasets.timeseries()
df.head()
id name x y
timestamp
2000-01-01 00:00:00 1032 Oliver 0.018604 0.089191
2000-01-01 00:00:01 1032 Norbert 0.666689 -0.979374
2000-01-01 00:00:02 991 Victor 0.027691 -0.474660
2000-01-01 00:00:03 979 Kevin 0.320067 0.656949
2000-01-01 00:00:04 1087 Zelda -0.462076 0.513409
def correct_skewness(columns=None, max_skewness=2):
if columns is None:
raise ValueError(
f"columns argument is None. Please set columns argument to a list of columns"
)
for col in columns:
skewness = stats.skew(df[col])
max_val = df[col].max().compute()
min_val = df[col].min().compute()
if abs(skewness) > max_skewness and (max_val > 1 or min_val < 0):
delta = 1.0
if min_val < 0:
delta = max(1, -min_val + 1)
df[col] = da.log(delta + df[col])
return df
df = correct_skewness(columns=['x', 'y'])
回答1:
There are a couple things you can do to improve parallelism in this example:
You can use dask.array.stats.skew rather than statsmodels.skew. You will have to import dask.array.stats
explicitly
You can compute the min/max of all columns in one computation
mins = [df[col].min() for col in cols]
maxes = [df[col].min() for col in cols]
skews = [da.stats.skew(df[col]) for col in cols]
mins, maxes, skews = dask.compute(mins, maxes, skews)
Then you could do your if-logic and apply da.log
as appropriate. This still requires two passes over your data, but that should be a nice improvement over what you have now.
来源:https://stackoverflow.com/questions/52117218/how-to-apply-a-function-to-multiple-columns-of-a-dask-data-frame-in-parallel