【CH5105】Cookies

☆樱花仙子☆ 提交于 2021-02-18 15:48:46

也是一道线型动态规划的好题……

读入每个人的贪婪度之后,对其按照从大到小的顺序排序,定义状态f[i][j]为前i个人(排序后)分j个饼干的答案,那么答案为f[n][m],考虑状态转移方程。

1、若给第i个人的饼干数大于1 ,那么我们将这i个人的饼干数都减1(总共减n),他们的怨气值是不会改变的,因而这种情况下,f[i][j]=f[i][j-i].

2、若给第i个人的饼干数等于1,那么我们枚举一个k(0≤k<i),表示从k之后一直到i所有的人的饼干数都是1,那么f[i][j]=f[k][j-(i-k)]+k*∑g[c[p]]    (k<p<=i).

我们先预处理出g数组的前缀和,即可实现O(n)的转移。

综上,我们在两种决策中取最优即可。另外,本题要求输出方案,我们只需在状态转移时记录每个状态的前驱即可。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 int n,m,f[40][5010],a[40][5010],b[40][5010];
 7 int s[50],ans[50];
 8 int g[50],c[50];
 9 bool cmp(int x,int y) {
10     return g[x]>g[y];
11 }
12 void calc(int x,int y) {
13     if(!x) return ;
14     calc(a[x][y],b[x][y]);
15     if(a[x][y]==x) 
16         for(int i=1;i<=x;i++) ans[c[i]]++;
17     else 
18         for(int i=a[x][y]+1;i<=x;i++) ans[c[i]]=1;
19 }
20 int main() {
21     scanf("%d%d",&n,&m);
22     for(int i=1;i<=n;i++)  {
23         scanf("%d",&g[i]);
24         c[i]=i;
25     }
26     sort(c+1,c+n+1,cmp);
27     memset(f,0x3f,sizeof(f));
28     f[0][0]=0;
29     for(int i=1;i<=n;i++) s[i]=s[i-1]+g[c[i]];
30     for(int i=1;i<=n;i++)
31         for(int j=i;j<=m;j++) {
32             f[i][j]=f[i][j-i];
33             a[i][j]=i;
34             b[i][j]=j-i;
35             for(int k=0;k<i;k++)
36                 if(f[i][j]>f[k][j-(i-k)]+k*(s[i]-s[k])) {
37                     f[i][j]=f[k][j-(i-k)]+k*(s[i]-s[k]);
38                     a[i][j]=k;
39                     b[i][j]=j-(i-k);
40                 }
41         }
42     printf("%d\n",f[n][m]);
43     calc(n,m);
44     for(int i=1;i<=n;i++) printf("%d ",ans[i]);
45     return 0;
46 }
AC Code

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!