决策树-缺失值处理

拥有回忆 提交于 2021-02-17 13:31:19

缺失值算是决策树里处理起来比较麻烦的了,其他简单的我就不发布了。

 

# encoding:utf-8
from __future__ import division
__author__ = 'HP'
import copy
import math
import numpy as np
import pandas as pd
from collections import Counter
from sklearn.preprocessing import LabelEncoder

################################
# id3
# 离散属性
# 多分类
# 多重字典记录学习规则

# 非递归

# 深度优先

# 预剪枝

### 缺失值处理
    # 解决两个问题
        # 如何进行划分属性选择,缺失值如何处理
        # 如何进行样本划分,缺失值对应的样本如何划分
################################

''' 缺失值处理
1. 如何进行属性选择
    a. 第一次选择划分属性时,样本等权重,均为1,找出未缺失的样本集,计算该样本集的信息增益 和 该样本集的占比,两者相乘即为真正的信息增益
        . 注意这时计算占比,就是数个数,因为权重都是1
        . 计算信息增益时,P也是数个数
    b. 后面选择划分属性时,样本不等权重,找出未缺失的样本集,计算该样本集的信息增益 和 该样本集的占比,两者相乘即为真正的信息增益
        . 此时样本权重不全为1
        . 计算占比时不是数个数,而是求权重和
        . 计算信息增益的P时,也是求权重和
2. 如何划分节点
    a. 未缺失按照正常方法划分,权重都为1
    b. 缺失值划到所有子集当中,权重不为1, 而是该属性值占未缺失的样本集的比例
'''


def mydata():
    data = pd.read_csv('xg3.txt',index_col=[0], encoding='gbk')
    data[[-1]] = data.apply(lambda x:x[-1].strip(), axis=1)
    # print(data)
    # print(pd.get_dummies(data[[0]]))
    data.columns = range(9)
    # print(data)

    encode_str = LabelEncoder()

    str_cols = [0, 1, 2, 3, 4, 5, 8]
    for i in str_cols:
        data[[i]] = encode_str.fit_transform(data[[i]])
    return data.values

def get_label(labels):
    count_label = Counter(labels)
    key = None
    sum = 0
    for label, count in count_label.items():
        if count > sum:
            sum = count
            key = label
    return key

def entropy(attr):
    # 信息熵
    attr_values_count = Counter(attr)
    attr_len = len(attr)
    sum = 0
    for i in attr_values_count.values():
        sum += -1 * i / attr_len * math.log(i / attr_len, 2)
    return sum

def gain_queshi_equal_weight(attr, label):
    # 缺失属性的信息增益,用于初次划分,初次划分样本权重都为1
    index_nan = np.isnan(attr)
    index_nonan = np.where(attr>=0)

    # 未缺失属性及标签
    attr_new = attr[index_nonan]
    label_new = label[index_nonan]

    # 未缺失样本数
    count_nonan = label_new.shape[0]

    # 未缺失占比
    zhanbi = attr_new.shape[0]/attr.shape[0]

    # 未缺失的原始熵
    ori_entropy = entropy(label_new)
    # 未缺失的新熵
    new_entropy = 0
    for key, count in Counter(attr_new).items():
        # 未缺失中属性值为key的占比 * key对应的样本集的熵
        new_entropy += count/count_nonan * entropy(label_new[np.where(attr_new == key)])

    # 信息增益
    gain = zhanbi * (ori_entropy - new_entropy)
    return gain

def split_node_queshi(node, attr_split):
    # 属性有缺失值的样本划分
    index_nan = np.isnan(node[:,attr_split])
    index_nonan = np.where(node[:,attr_split]>=0)

    # 未缺失属性值对应的样本集
    node_new = node[index_nonan]
    # 缺失属性值对应的样本集
    sample_queshi = node[index_nan]

    # 未缺失样本大小
    count_nonan = node_new.shape[0]

    ### 对该样本集进行划分
    # 未缺失的划分 [属性值,样本集,样本占比]
    split = []
    for key, node_child in pd.DataFrame(node_new).groupby(attr_split):
        # 属性值为key的样本在未缺失样本中占比
        zhanbi_key = round(len(node_child) / count_nonan, 3)

        # 未缺失样本权重为1
        weight = [1] * len(node_child)

        # 添加缺失样本
        node_child = np.vstack((node_child.values, sample_queshi))
        # 缺失样本权重
        weight.extend([zhanbi_key] * len(sample_queshi))

        split.append([key, node_child, np.array(weight)])
    return split

def entropy_no_equal_weight(attr, weight):
    # 样本不等权重的信息熵
    sum = 0
    sum_weight = np.sum(weight)
    for key in Counter(attr).keys():
        index = np.where(attr==key)
        zhanbi = np.sum(weight[index]) / sum_weight
        sum += -1 * zhanbi * math.log(zhanbi, 2)
    return sum

def gain_queshi_no_equal_weight(attr, weight, label):
    # 缺失属性的信息增益,样本权重不相等,用于第一次之后的属性选择
    index_nan = np.isnan(attr)
    index_nonan = np.where(attr>=0)

    # 未缺失的属性/标签/权重
    attr_new = attr[index_nonan]
    label_new = label[index_nonan]
    weight_new = weight[index_nonan]

    # 未缺失对应的样本占比
    zhanbi = np.sum(weight_new) / np.sum(weight)

    ### 未缺失对应的信息增益
    # 未缺失对应的原始熵
    ori_entropy = entropy_no_equal_weight(label_new, weight_new)

    # 未缺失的新熵
    new_entropy = 0
    for key in Counter(attr_new).keys():
        index_key = np.where(attr_new==key)
        label_key = label_new[index_key]
        weight_key = weight_new[index_key]
        new_entropy += len(label_key) / len(label_new) * entropy_no_equal_weight(label_key, weight_key)

    # 信息增益
    gain = zhanbi * (ori_entropy - new_entropy)
    return gain


if __name__ == '__main__':
    data = mydata()
    # 离散型样本
    data = data[:,[0,1,2,3,4,5,8]]
    data[0, 0] = None
    data[4, 0] = None
    data[12, 0] = None
    data[7, 3] = None
    data[9, 3] = None
    print(data)

    # 缺失属性的信息增益  样本等权重
    for i in range(data.shape[1]):
        print gain_queshi_equal_weight(data[:,i], data[:,-1])

    # 缺失值属性的样本划分
    split = split_node_queshi(data, 3)
    print(split)

    # 缺失属性的信息增益 样本不等权重
    # weight = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1/3, 1/3])
    # gain_queshi_no_equal_weight(data[:,0], weight, data[:,-1])

    # 以色泽为例
    gain = gain_queshi_no_equal_weight(split[2][1][:,0], split[2][2],split[2][1][:,-1])
    print(gain)

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!