Bracket Abstraction in Prolog

前提是你 提交于 2021-02-16 14:47:20

问题


The algorithm "A" according to Antoni Diller looks fairly simple:

http://www.cantab.net/users/antoni.diller/brackets/intro.html

Can we do this in Prolog?


回答1:


% associate formulas to left
associate_left(F, A, B) :-
    append(A, [B], F).

% apply algorithm
reduce(b(_, []), []).
reduce(b(A, B), 'K'(B)) :- atom(B), dif(A, B).
reduce(b(A, A), 'I').
reduce(b(A, [F]), R) :- reduce(b(A, F), R). % uncessary paranthesis case
reduce(b(A, F), 'S'(Pr, Qr)) :-
    associate_left(F, P, Q),
    reduce(b(A, P), Pr),
    reduce(b(A, Q), Qr).

I am assuming bound formulas are b(x, F) where x is bound in F.

?- reduce(b(x, [x]), A).
A = 'I' 

?- reduce(b(x, [y]), A).
A = 'K'(y) 

?- reduce(b(x, [u, v]), A).
A = 'S'('K'(u), 'K'(v)) 

Example from your link

?- reduce(b(x, [u, v, [w, z, x], [x, z, y], [z, x, [y, x]]]), A).
A = 'S'('S'('S'('S'('K'(u), 'K'(v)), 'S'('S'('K'(w), 'K'(z)), 'I')), 'S'('S'('I', 'K'(z)), 'K'(y))), 'S'('S'('K'(z), 'I'), 'S'('K'(y), 'I'))) 

I tried algorithm B too. It is a bit hairy but here it is.




回答2:


Used a slightly different coding for application
with a Prolog operator that is already left associative:

?- X = ((a*b)*c).
X = a*b*c

And added a predicate unlambda/2:

unlambda(b(X,Y), Z) :- !,
   unlambda(Y, H),
   reduce(H, X, Z).
unlambda(P*Q, W) :- !,
   unlambda(P, R),
   unlambda(Q, S),
   W = R*S.
unlambda(X, X).

reduce(X, X, W) :- !,
   W = 'I'.
reduce(P*Q, Z, W) :- !,
   reduce(P, Z, R),
   reduce(Q, Z, S),
   W = 'S'*R*S.
reduce(X, _, 'K'*X).

But we see that there is a problem,
results can get quite long:

?- unlambda(b(x,b(y,x)), X).
X = 'S'*('K'*'K')*'I'
?- unlambda(b(x,b(y,b(z,(x*z)*(y*z)))), X).
X = 'S'*('S'*('K'*'S')*('S'*('S'*('K'*'S')*('S'*('K'*'K')*('K'*'S')))*
('S'*('S'*('K'*'S')*('S'*('S'*('K'*'S')*('S'*('K'*'K')*('K'*'S')))*
('S'*('S'*('K'*'S')*('S'*('K'*'K')*('K'*'K')))*('S'*('K'*'K')*'I'))))*
('S'*('K'*'K')*('K'*'I')))))*('S'*('S'*('K'*'S')*('S'*('S'*('K'*'S')*
('S'*('K'*'K')*('K'*'S')))*('S'*('S'*('K'*'S')*('S'*('K'*'K')*
('K'*'K')))*('K'*'I'))))*('S'*('K'*'K')*('K'*'I')))

We can use two identities already documented by Curien(*),
that have the effect of [x]E = 'K'E and [x]Ex = E:

reduce(P*Q, Z, W) :- !,
   reduce(P, Z, R),
   reduce(Q, Z, S),
   (S = 'I', R = 'K'*L ->
       W = L;
    S = 'K'*M, R = 'K'*L ->
       W = 'K'*(L*M);
       W = 'S'*R*S).

The result are much better now:

?- unlambda(b(x,b(y,x)), X).
X = 'K'
?- unlambda(b(x,b(y,b(z,(x*z)*(y*z)))), X).
X = 'S'

(*) See page 215 rule (abs) and rule (eta):
Categorical Combinators
P.-L. Curien - 1986
https://core.ac.uk/download/pdf/82017242.pdf



来源:https://stackoverflow.com/questions/65066544/bracket-abstraction-in-prolog

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!