####配置:Ubuntu16.04+MatlabR2016b+cuda8.0+cudnn5.1+caffe
配置caffe真的不是很容易,特别是对初次接触Linux的同学,各种报错(ノ_;\( `ロ´),搞了好几天才解决
caffe安装可能出现的问题 ####可能会出现的问题 问题1."libcudart.so.8.0 cannot open shared object file: No such file or directory" 解决方法: 解决办法是将一些文件复制到/usr/local/lib文件夹下: 注意自己CUDA的版本号!
sudo cp /usr/local/cuda-8.0/lib64/libcudart.so.8.0 /usr/local/lib/libcudart.so.8.0 && sudo ldconfig
sudo cp /usr/local/cuda-8.0/lib64/libcublas.so.8.0 /usr/local/lib/libcublas.so.8.0 && sudo ldconfig
sudo cp /usr/local/cuda-8.0/lib64/libcurand.so.8.0 /usr/local/lib/libcurand.so.8.0 && sudo ldconfig
问题2."libcudnn.so.5 cannot open shared object file: No such file or directory" 解决方法: 解决办法是将一些文件复制到/usr/local/lib文件夹下 注意自己CUDA的版本号!
sudo cp /usr/local/cuda-8.0/lib64/libcudnn.so /usr/local/lib/libcudnn.so && sudo ldconfig
sudo cp /usr/local/cuda-8.0/lib64/libcudnn.so.5 /usr/local/lib/libcudnn.so.5 && sudo ldconfig
sudo cp /usr/local/cuda-8.0/lib64/libcudnn.so.5.1.5 /usr/local/lib/libcudnn.so.5.1.5 && sudo ldconfig
问题3."OSError: libcudnn.so.7.0: cannot open shared object file: No such file or directory错误" 解决方法:
#因为cuda的路径可能设置错了
sudo ldconfig /usr/local/cuda/lib64
问题4.linux下Matcaffe调用及库链接问题的解决(mattest不通过) 解决方法:
编译make matcaffe后,执行make mattest后,往往出现“Invalid MEX-file"问题,其原因是MATLAB和linux的库冲突,解决的方法是用linux的库(在编译caffe之前大家的opencv等库肯定也早已装好了)
大部分的解决方法是通过export LD_LIBRARY_PATH和 LD_PRELOAD来链接,但是效果不好。最后发现,只有直接去MATLAB下面删除库并重新链接到x86_64-linux-gnu的方法是最好的。具体方法如下:
1.不需要降级gcc和g++,就用linux的自带版本,否则caffe编译不一定通过。我的是14.04的5.4(千万不要先用5去编译caffe再降级用4.4编译matcaffe)
2.不要去用改LIBRARY_PATH的方法,因为很可能不成功,尤其是有倒霉催的anaconda的情况下。
3.找到你的linux库的位置(一般是/usr/lib/x86_64-linux-gnu/)以及MATLAB库的位置(默认是/usr/local/MATLAB/R2014a/sys/os/glnxa64/)。然后写个sh执行下列操作
rm -rf /usr/local/MATLAB/R2014a/sys/os/glnxa64/libstdc++.so.6
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21 /usr/local/MATLAB/R2014a/sys/os/glnxa64/libstdc++.so.6
rm -rf /usr/local/MATLAB/R2014a/bin/glnxa64/libopencv_core.so.2.4
ln -s /usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4.9 /usr/local/MATLAB/R2014a/bin/glnxa64/libopencv_core.so.2.4
rm -rf /usr/local/MATLAB/R2014a/bin/glnxa64/libopencv_imgproc.so.2.4
sudo ln -s /usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.2.4.9 /usr/local/MATLAB/R2017a/bin/glnxa64/libopencv_imgproc.so.2.4
rm -rf /usr/local/MATLAB/R2014a/bin/glnxa64/libopencv_highgui.so.2.4
sudo ln -s /usr/lib/x86_64-linux-gnu/libopencv_highgui.so.2.4.9 /usr/local/MATLAB/R2017a/bin/glnxa64/libopencv_highgui.so.2.4
rm -rf /usr/local/MATLAB/R2014a/bin/glnxa64/libfreetype.so.6
sudo ln -s /usr/lib/x86_64-linux-gnu/libfreetype.so.6 /usr/local/MATLAB/R2017a/bin/glnxa64/libfreetype.so.6
问题5.Invalid MEX-file '/home/xw/caffeBuild/caffe-master/matlab/+caffe/private/caffe_.mexa64': /home/xw/caffeBuild/caffe-master/matlab/+caffe/private/caffe_.mexa64: undefined symbol: _ZN2cv8imencodeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEERKNS_11_InputArrayERSt6vectorIhSaIhEERKSB_IiSaIiEE
Error in caffe.set_mode_cpu (line 5) caffe_('set_mode_cpu');
Error in caffe.run_tests (line 6) caffe.set_mode_cpu(); 解决方法:
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_imgproc.so.2.4 libopencv_imgproc.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_highgui.so.2.4 libopencv_highgui.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_core.so.2.4 libopencv_core.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# ln /usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4.9 libopencv_core.so.2.4
root@test222:/matlab/r2016a/bin/glnxa64# ln /usr/lib/x86_64-linux-gnu/libopencv_highgui.so.2.4.9 libopencv_highgui.so.2.4
root@test222:/matlab/r2016a/bin/glnxa64# ln /usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.2.4.9 libopencv_imgproc.so.2.4
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/:/usr/local/cuda-8.0/lib64
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libopencv_highgui.so.2.4:/usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.2.4:/usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4:/usr/lib/x86_64-linux-gnu/libstdc++.so.6:/usr/lib/x86_64-linux-gnu/libfreetype.so.6
问题6.错误:undefined symbol: _ZN2cv8imencodeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEERKNS_11_InputArrayERSt6vectorIhSaIhEERKSB_IiSaIiEE
解决方法:
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_imgproc.so.2.4 libopencv_imgproc.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_highgui.so.2.4 libopencv_highgui.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# mv libopencv_core.so.2.4 libopencv_core.so.2.4.bak
root@test222:/matlab/r2016a/bin/glnxa64# sudo ln -s /usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4.9 libopencv_core.so.2.4
root@test222:/matlab/r2016a/bin/glnxa64#sudo ln -s /usr/lib/x86_64-linux-gnu/libopencv_highgui.so.2.4.9 libopencv_highgui.so.2.4
root@test222:/matlab/r2016a/bin/glnxa64#sudo ln -s /usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.2.4.9 libopencv_imgproc.so.2.4
问题7.警告: 执行 'caffe.Solver' 类析构函数时,捕获到以下错误: 错误使用 caffe_ Usage: caffe_('delete_solver', hSolver)
出错 caffe.Solver/delete (line 40) caffe_('delete_solver', self.hSolver_self);
出错 caffe.Solver (line 17) function self = Solver(varargin)
出错 caffe.test.test_solver (line 22) self.solver = caffe.Solver(solver_file);
出错 caffe.run_tests (line 14) run(caffe.test.test_solver) ...
In caffe.Solver (line 17) In caffe.test.test_solver (line 22) In caffe.run_tests (line 14) 解决方法:
https://blog.csdn.net/xiaojiajia007/article/details/72850247
40行:
if ~isempty(self.hNet_self)
caffe_('delete_net', self.hNet_self);
end
if ~isempty(self.hNet_self)
caffe_('delete_net', self.hNet_self);
end
if self.isvalid
caffe_('delete_net', self.hNet_self);
end
问题8.matlab测试 https://blog.csdn.net/weiqi_fan/article/details/71023222 解决方法:
设置GPU
gpu_id = 0
caffe.set_mode_gpu();
caffe.set_device(gpu_id);
问题9.matlab奔溃的问题 解决方法:
https://askubuntu.com/questions/758892/doesnt-matlab-work-on-ubuntu-16-04
问题10.更换caffe版本 解决方法:
https://www.codeleading.com/article/1186958985/
使用新版本的问题:
./include/caffe/util/cudnn.hpp
./include/caffe/layers/cudnn_conv_layer.hpp
./include/caffe/layers/cudnn_relu_layer.hpp
./include/caffe/layers/cudnn_sigmoid_layer.hpp
./include/caffe/layers/cudnn_tanh_layer.hpp
./src/caffe/layers/cudnn_conv_layer.cpp
./src/caffe/layers/cudnn_conv_layer.cu
./src/caffe/layers/cudnn_relu_layer.cpp
./src/caffe/layers/cudnn_relu_layer.cu
./src/caffe/layers/cudnn_sigmoid_layer.cpp
./src/caffe/layers/cudnn_sigmoid_layer.cu
./src/caffe/layers/cudnn_tanh_layer.cpp
./src/caffe/layers/cudnn_tanh_layer.cu
保存原来的文件 mv cudnn.hpp cudnn.hpp.bak
layers:
mv cudnn_conv_layer.hpp cudnn_conv_layer.hpp.bak
mv cudnn_relu_layer.hpp cudnn_relu_layer.hpp.bak
mv cudnn_sigmoid_layer.hpp cudnn_sigmoid_layer.hpp.bak
mv cudnn_tanh_layer.hpp cudnn_tanh_layer.hpp.bak
src:
mv cudnn_conv_layer.cpp cudnn_conv_layer.cpp.bak
mv cudnn_conv_layer.cu cudnn_conv_layer.cu.bak
mv cudnn_relu_layer.cpp cudnn_relu_layer.cpp.bak
mv cudnn_relu_layer.cu cudnn_relu_layer.cu.bak
mv cudnn_sigmoid_layer.cpp cudnn_sigmoid_layer.cpp.bak
mv cudnn_sigmoid_layer.cu cudnn_sigmoid_layer.cu.bak
mv cudnn_tanh_layer.cpp cudnn_tanh_layer.cpp.bak
mv cudnn_tanh_layer.cu cudnn_tanh_layer.cu.bak
复制文件: 源文件:/home/a/public1/denglei_codeFile/caffe/
目标文件夹:/home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/
cp /home/a/public1/denglei_codeFile/caffe/include/caffe/util/cudnn.hpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/include/caffe/util/
cp /home/a/public1/denglei_codeFile/caffe/include/caffe/layers/cudnn_conv_layer.hpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/include/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/include/caffe/layers/cudnn_relu_layer.hpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/include/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/include/caffe/layers/cudnn_sigmoid_layer.hpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/include/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/include/caffe/layers/cudnn_tanh_layer.hpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/include/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_conv_layer.cpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_conv_layer.cu /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_relu_layer.cpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_relu_layer.cu /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_sigmoid_layer.cpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_sigmoid_layer.cu /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_tanh_layer.cpp /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
cp /home/a/public1/denglei_codeFile/caffe/src/caffe/layers/cudnn_tanh_layer.cu /home/a/public1/denglei_codeFile/caffe2v/caffe-rpnbf-cudnn5/src/caffe/layers/
问题11.matlab奔溃报错,/MATLAB/R2016b/bin/glnxa64/libboost_filesystem.so _ZNK5boost1
解决方法:
对gcc,g++版本进行降级
https://blog.csdn.net/betty13006159467/article/details/78394974
问题12.设置protobuf 解决方法: 注意重新编译protobuf,要使用gcc5 和gvv5,不然后面通不过的
问题13.make runtest -j32 显示check failed error == cudasuccess (2 vs. 0) out of memory 解决方法: 使用这句话来测试
make runtest -j$(nproc)
参考链接: 很有用的博客 安装好caffe之后配置Matlab的接口
MatCaffe用法总结 Ubuntu16.04 Caffe 安装步骤记录(超详尽) caffe的Matlab接口的使用方法
来源:oschina
链接:https://my.oschina.net/u/4284426/blog/3502856