caffe详解之损失函数

雨燕双飞 提交于 2021-02-13 23:46:17

从零开始,一步一步学习caffe的使用,期间贯穿深度学习和调参的相关知识!


Caffe中的损失函数解析

导言

在有监督的机器学习中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function)。
Caffe中,目前已经实现了一些损失函数,包括最常见的L2损失函数,对比损失函数,信息增益损失函数等等。在这里做一个笔记,归纳总结Caffe中用到的不同的损失函数,以及分析它们各自适合的使用场景。

欧式距离损失函数(Euclidean Loss)

对比损失函数(Contrastive loss)

铰链损失函数(Hinge Loss)

信息增益损失函数(InformationGain Loss)

多项式逻辑损失函数(Multinomial Logistic Loss)

Sigmoid 交叉熵损失函数(Sigmoid Cross Entropy Loss)

Softmax+损失函数(Softmax With Loss)

总结

欧式距离损失函数:一般适用于回归问题,特别是回归的值是实数的时候。
对比损失函数:用来训练siamese网络时候。
Hinge loss:在一对多的分类中应用,类似于SVM
多项式逻辑损失函数:一般在一对多的分类任务中应用,直接把预测的概率分布作为输入。
sigmoid交叉熵损失函数:预测目标概率分布。
softmax+损失函数:在一对多分类中的应用。

参考

来源:Caffe中的损失函数解析 http://www.aichengxu.com/other/10039373.htm


-长按关注-


本文分享自微信公众号 - AI异构(gh_ed66a0ffe20a)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!