scipy.optimize get's trapped in local minima. What can I do?

对着背影说爱祢 提交于 2021-02-13 17:30:09

问题


 from numpy import *; from scipy.optimize import *; from math import *
def f(X):
    x=X[0];    y=X[1]
    return x**4-3.5*x**3-2*x**2+12*x+y**2-2*y

bnds = ((1,5), (0, 2))
min_test = minimize(f,[1,0.1], bounds = bnds); 
print(min_test.x)

My function f(X)has a local minima at x=2.557, y=1 which I should be able to find.

The code showed above will only give result where x=1. I have tried with different tolerance and alle three method: L-BFGS-B, TNC and SLSQP. This is the thread I have been looking at so far: Scipy.optimize: how to restrict argument values

How can I fix this?

I am using Spyder(Python 3.6).


回答1:


You just encounterd the problem with local optimization: it strongly depends on the start (initial) values you pass in. If you supply [2, 1] it will find the correct minima.

Common solutions are:

  • use your optimization in a loop with random starting points inside your boundaries

    import numpy as np
    from numpy import *; from scipy.optimize import *; from math import *
    
    def f(X):
        x=X[0];    y=X[1]
        return x**4-3.5*x**3-2*x**2+12*x+y**2-2*y
    
    bnds = ((1,3), (0, 2))
    
    for i in range(100):
    
        x_init = np.random.uniform(low=bnds[0][0], high=bnds[0][1])
        y_init = np.random.uniform(low=bnds[1][0], high=bnds[1][1])
    
        min_test = minimize(f,[x_init, y_init], bounds = bnds)
    
        print(min_test.x, min_test.fun)
    
  • use an algorithm that can break free of local minima, I can recommend scipy's basinhopping()

  • use a global optimization algorithm and use it's result as initial value for a local algorithm. Recommendations are NLopt's DIRECT or the MADS algorithms (e.g. NOMAD). There is also another one in scipy, shgo, that I have no tried yet.




回答2:


Try scipy.optimize.basinhopping. It simply just repeat your minimize procedure multiple times and get multiple local minimums. The minimal one is the global minimum.

minimizer_kwargs = {"method": "L-BFGS-B"}
res=optimize.basinhopping(nethedge,guess,niter=100,minimizer_kwargs=minimizer_kwargs)


来源:https://stackoverflow.com/questions/52438263/scipy-optimize-gets-trapped-in-local-minima-what-can-i-do

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!