C++ meta-function over templates

孤街浪徒 提交于 2021-02-11 18:19:42

问题


I have some templates like the ones below that I can use to define simple expressions e.g.

Expr<constant,int,int,1,1> = 2

Expr<sub, Expr<constant,int,int,1,1>, Expr<constant,int,int,2,0>, 1, 1> = x - 2.

I want to define a meta-function that takes an Expr and returns another Expr that is a modified version of the one passed as input. The output will be based on the template arguments of the input so I guess I have to define multiple function templates that specialize different inputs. Eventually my goal is to be able to differentiate Expr's.

// the types of expressions (+,-,*, etc.)
enum ExprType { mul, divide, add, sub, constant};

// constant
template <ExprType eType, class Left, class Right, int coeff, int power> struct Expr {
    static double eval(double x){
        return coeff * std::pow(x, power);
    }
};

//sub
template <class Left, class Right, int coeff, int power> struct Expr<sub, Left, Right, coeff, power> {
    static double eval(double x){
        return coeff * std::pow(Left::eval(x) - Right::eval(x), power);
    }
};

// add
template <class Left, class Right, int coeff, int power> struct Expr<add, Left, Right, coeff, power> {
    static double eval(double x){
        return coeff * std::pow(Left::eval(x) + Right::eval(x), power);
    }
};

However, I am having trouble wrapping my head around the function definition. So far I have:

template <template <ExprType eType, class Left, class Right, int coeff, int power> class E> struct ExprDerivative {
    static E derivative(E e){
        return e;
    }
};

Am I going in the right direction? How do I define a meta-function over templates?


回答1:


You want a type trait, which is a function with types as arguments. A type trait's definition looks nothing like a function on values (they're essentially written in a functional programming style, with "equations"), but they're called as you'd expect (func<args>).

template<typename Differentiand> struct derivative;
// shorthand for calling the function: derivative_t<expr...>
template<typename Differentiand>
using derivative_t = typename derivative<Differentiand>::result;

// every "equation" is a specialization of derivative for a certain set of Exprs that defines the result as a member type
template<typename L, typename R, int coeff, int power>
struct derivative<Expr<constant, L, R, coeff, power>> { using result = Expr<constant, L, R, coeff*power, power - 1> };
// etc

However, I am worried about how you've written the Expr type in the first place. constants are not constants; they're expressions of the form cx^n. Also, they have extraneous left and right operands. It would be better to do this

struct variable {
    static constexpr double eval(double x) { return x; }
};
template<int Value>
struct constant {
    static constexpr double eval(double x) { return Value; } 
};
template<typename Left, typename Right>
struct addition {
    static constexpr double eval(double x) { return Left::eval(x) + Right::eval(x); }
};
template<typename Left, typename Right>
struct multiplication {
    static constexpr double eval(double x) { return Left::eval(x) * Right::eval(x); }
};
template<typename Base, int Power>
struct exponentiation {
    static double eval(double x) { return std::pow(Base::eval(x), Power); }
};
// no need to add these as "primitives"
template<typename Left, typename Right>
using subtraction = addition<Left, multiplication<constant<-1>, Right>>;
template<typename Left, typename Right>
using division = multiplication<Left, exponentiation<Right, -1>>;

The results of differentiation do end up a little less simplified, but you can write another function to clean up after:

template<>
struct derivative<variable> { using result = constant<1>; };
template<int Value>
struct derivative<constant<Value>> { using result = constant<0>; };
template<typename L, typename R>
struct derivative<addition<L, R>> { using result = addition<derivative_t<L>, derivative_t<R>>; };
template<typename L, typename R>
struct derivative<multiplication<L, R>> { using result = addition<multiplication<derivative_t<L>, R>, multiplication<L, derivative_t<R>>>; };
template<typename B, int N>
struct derivative<exponentiation<B, N>> { using result = multiplication<multiplication<constant<N>, exponentiation<B, N - 1>>, derivative_t<B>>; };

E.g.

int main() {
    // y = (x^2 + 1)/x
    // dy/dx = 1 - x^-2
    // dy/dx(x = 2) = 1 - 1/4 = 0.75
    std::cout << derivative_t<division<addition<exponentiation<variable, 2>, constant<1>>, variable>>::eval(2) << "\n";
}



回答2:


Not sure to understand what do you want... but sure you can't pass a template-template argument as a function argument.

Seems to me that your ExprDerivative() functional can be written, as template function that permit to deduce the template-template and the template parameters from the e argument, as follows

template <template <ExprType, typename, typename, int, int> class E,
          ExprType eType, typename Left, typename Right,
          int coeff, int power>
auto ExprDerivative (E<eType, Left, Right, coeff, power> e)
 { return e; }

Observe that, this way, the argument e is of type E<eType, Left, Right, coeff, power>, not of type E (that isn't a type).

You can use it, by example, as follows

Expr<constant, int, int, 1, 1> e0;

auto e1 = ExprDerivative(e0);


来源:https://stackoverflow.com/questions/60365244/c-meta-function-over-templates

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!