问题
- How can only the boundary values be extracted, or returned, from
.predict
, for sklearn.neighbors.KNeighborsClassifier()?
MRE
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# prepare data
iris = load_iris()
X = iris.data
y = iris.target
df = pd.DataFrame(X, columns=iris.feature_names)
df['label'] = y
species_map = dict(zip(range(3), iris.target_names))
df['species'] = df.label.map(species_map)
df = df.reindex(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'species', 'label'], axis=1)
# instantiate model
knn = KNeighborsClassifier(n_neighbors=6)
# predict for 'petal length (cm)' and 'petal width (cm)'
knn.fit(df.iloc[:, 2:4], df.label)
h = .02 # step size in the mesh
# create colormap for the contour plot
cmap_light = ListedColormap(list(sns.color_palette('pastel', n_colors=3)))
# Plot the decision boundary.
# For that, we will assign a color to each point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = df['petal length (cm)'].min() - 1, df['petal length (cm)'].max() + 1
y_min, y_max = df['petal width (cm)'].min() - 1, df['petal width (cm)'].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
# create plot
fig, ax = plt.subplots()
# add data points
sns.scatterplot(data=df, x='petal length (cm)', y='petal width (cm)', hue='species', ax=ax, edgecolor='k')
# add decision boundary countour map
ax.contourf(xx, yy, Z, cmap=cmap_light, alpha=0.4)
# legend
lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
Resulting Plot
Desired Plot
- Not the colors, or styles, just that it has only the decision boundary, and the data points.
Resources
- scikit-learn: Nearest Neighbors Classification
- scikit-learn: Plot the decision boundaries of a VotingClassifier
- scikit-learn: Comparing Nearest Neighbors with and without Neighborhood Components Analysis
SO Question that doesn't answer the question
- Plotting a decision boundary separating 2 classes using Matplotlib's pyplot
- This solution shows how to plot the decision boundary without filling the plot, but none of the answers show how to extract the decision boundary values.
plt.contour(xx, yy, Z, cmap=plt.cm.Paired)
- This solution shows how to plot the decision boundary without filling the plot, but none of the answers show how to extract the decision boundary values.
Self Answered
- I have provided a solution, but I'm not sure if it's the best solution. I'm certainly open to other options.
- That said, I do not want a solution that is a colored in
contourf
, orpcolormesh
plot. - The best solution would, succinctly, extract only the decision boundary values.
回答1:
- This is one solution that I came up with, which uses np.diff along both axes of
Z
, the.predict
result. The idea being, whenever there is a change in result, that is a decision boundary.- Use
.diff
to subtractZ
from itself, shifted by 1. - Create
mask
, usingnp.diff(Z) != 0
- Use
mask
to select the appropriatex
andy
fromxx
andyy
- Use
- Using the existing code from the OP
# use diff to create a mask
mask = np.diff(Z, axis=1) != 0
mask2 = np.diff(Z, axis=0) != 0
# apply mask against xx and yy
xd = np.concatenate((xx[:, 1:][mask], xx[1:, :][mask2]))
yd = np.concatenate((yy[:, 1:][mask], yy[1:, :][mask2]))
# plot just the decision boundary
fig, ax = plt.subplots()
sns.scatterplot(x=xd, y=yd, color='k', edgecolor='k', s=5, ax=ax, label='decision boundary')
plt.show()
fig, ax = plt.subplots()
sns.scatterplot(data=df, x='petal length (cm)', y='petal width (cm)', hue='species', ax=ax, edgecolor='k')
sns.scatterplot(x=xd, y=yd, color='k', edgecolor='k', s=5, ax=ax, label='decision boundary')
lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
xd
and yd
correctly overlay plt.contourf
来源:https://stackoverflow.com/questions/64398946/how-to-extract-the-boundary-values-from-k-nearest-neighbors-predict