问题
How would I calculated standartized residuals from arima model sarimax
function?
lets say we have some basic model:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='ticks', context='poster')
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal_decompose
import seaborn as sns
#plt.style.use("ggplot")
import pandas_datareader.data as web
import pandas as pd
import statsmodels.api as sm
import scipy
import statsmodels.stats.api as sms
import matplotlib.pyplot as plt
import datetime
model = SARIMAX(df, order = (6, 0, 0), trend = "c");
model_results = model.fit(maxiter = 500);
print(model_results.summary());
I need standardizer so when we use model_results.plot_diagnostics(figsize = (16, 10));
function and then just basic plot
function residuals should look the same.
回答1:
I think you can use the function "internally_studentized_residual" from https://stackoverflow.com/a/57155553/14294235
It should work like this:
model = SARIMAX(df, order = (6, 0, 0), trend = "c");
model_results = model.fit(maxiter = 500);
model_fittebd_y = model_results.fittedvalues
resid_studentized = internally_studentized_residual(df,model_fitted_y)
resid_studentized = -resid_studentized
plt.plot(resid_studentized)
plt.axhline(y=0, color='b', linestyle='--')
plt.show()
来源:https://stackoverflow.com/questions/58666173/how-can-i-calculate-standardized-residuals-in-python