自然语言处理词向量模型-word2vec

杀马特。学长 韩版系。学妹 提交于 2021-02-11 08:30:39

自然语言处理与深度学习:

语言模型:

N-gram模型:

 

N-Gram模型:在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列。在进行自然语言分析时,使用n-gram或者寻找常用词组,可以很容易的把一句话分解成若干个文字片段

词向量:

神经网络模型:

注:初始化向量,可以先随机初始化。

传统神经神经网络只需要优化输入层与隐层,隐层与输出层之间的参数。

 

 

神经网络模型的优势:一方面可以得到词语之间近似的含义,另一方面求解出的空间符合真实逻辑规律

CBOW求解目标:

预备知识:

树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。

分层的softmax设计思想:词频中出现词概率高的尽可能往前放,可以用哈夫曼树来设计。

自然语言哈夫曼树详解,包含构造和编码:https://blog.csdn.net/shuangde800/article/details/7341289

Hierarchical Softmax是用哈夫曼树构造出很多个二分类。

 

 

负采样模型:

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!