How to find the exact set of operations for a specific number?

风流意气都作罢 提交于 2019-11-28 02:03:14

In fact, the brute force solution really isn't so much code

(EDIT: Changed the code slightly, because some of the rules had not been properly taken into account)

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class NumberPuzzle
{
    public static void main(String[] args)
    {
        List<Integer> numbers = Arrays.asList(2,4,5,25,75,100); 
        Integer result = 268;
        solve(numbers, result);
    }

    private static void solve(List<Integer> numbers, Integer result)
    {
        List<Node> nodes = new ArrayList<Node>();
        for (int i=0; i<numbers.size(); i++)
        {
            Integer number = numbers.get(i);
            nodes.add(new Node(number));
        }
        System.out.println(nodes);


        List<Node> all = create(nodes);
        System.out.println("Found "+all.size()+" combinations");

        List<Node> best = new ArrayList<Node>();
        Integer minDifference = Integer.MAX_VALUE;
        for (Node n : all)
        {
            //System.out.println(n);
            Integer e = n.evaluate();
            Integer difference = Math.abs(e - result); 
            if (difference < minDifference)
            {
                best.clear();
                minDifference = difference;
                best.add(n);
            }
            else if (difference.equals(minDifference))
            {
                best.add(n);
            }
        }

        for (Node n : best)
        {
            System.out.println(n+" = "+n.evaluate());
        }
    }

    private static List<Node> create(List<Node> nodes)
    {
        if (nodes.size() == 1)
        {
            return nodes;
        }
        List<Node> result = new ArrayList<Node>(nodes);
        for (int i=0; i<nodes.size(); i++)
        {
            List<Node> copy = new ArrayList<Node>(nodes);
            Node node = copy.remove(i);
            List<Node> others = create(copy);
            for (int j=0; j<others.size(); j++)
            {
                Node other = others.get(j);
                result.add(new Node(node, '+', other));
                result.add(new Node(node, '*', other));
                result.add(new Node(node, '-', other));
                result.add(new Node(other, '-', node));

                Integer vNode = node.evaluate();
                Integer vOther = other.evaluate();
                if (vOther != 0 && vNode % vOther == 0)
                {
                    result.add(new Node(node, '/', other));
                }
                if (vNode != 0 && vOther % vNode == 0)
                {
                    result.add(new Node(other, '/', node));
                }
            }
        }
        return result;
    }

    static class Node
    {
        Integer value;
        Node left;
        Character op;
        Node right;

        Node(Node left, Character op, Node right)
        {
            this.left = left;
            this.op = op;
            this.right = right;
        }
        Node(Integer value)
        {
            this.value = value;
        }

        Integer evaluate()
        {
            if (op != null)
            {
                Integer lv = left.evaluate();
                Integer rv = right.evaluate();
                switch (op)
                {
                    case '+': return lv + rv;
                    case '-': return lv - rv;
                    case '*': return lv * rv;
                    case '/': return rv.equals(0) ? Integer.MAX_VALUE : lv / rv;
                }
            }
            return value;
        }

        @Override
        public String toString()
        {
            if (op == null)
            {
                return String.valueOf(value);
            }
            return "("+left.toString()+op+right.toString()+")";
        }
    }
}

It finds quite some solutions....

(EDIT: Updated according to the changed code)

(2*(4+(5+(25+100)))) = 268
(2*(4+(5+(100+25)))) = 268
(2*(4+(25+(5+100)))) = 268
(2*(4+(25+(100+5)))) = 268
(2*(4+(100+(5+25)))) = 268
(2*(4+(100+(25+5)))) = 268
((5*(4-(25-75)))-2) = 268
((5*(4+(75-25)))-2) = 268
(2*(5+(4+(25+100)))) = 268
((5*(4+(25-(75-100))))-2) = 268
((5*(4-((75-100)-25)))-2) = 268
((5*(4+(25+(100-75))))-2) = 268
((5*(4+(25+(100-75))))-2) = 268
((5*(4+(25-(75-100))))-2) = 268
((5*(4-((75-100)-25)))-2) = 268
((5*(4+(75-25)))-2) = 268
((5*(4-(25-75)))-2) = 268
((5*(4-(75-(25+100))))-2) = 268
((5*(4+((25+100)-75)))-2) = 268
((5*(4-(75-(100+25))))-2) = 268
((5*(4+((100+25)-75)))-2) = 268
(2*(5+(4+(100+25)))) = 268
((5*(4+(100+(25-75))))-2) = 268
((5*(4+(100-(75-25))))-2) = 268
((5*(4-((75-25)-100)))-2) = 268
((5*(4+(100-(75-25))))-2) = 268
((5*(4-((75-25)-100)))-2) = 268
((5*(4+(100+(25-75))))-2) = 268
((5*((4+75)-25))-2) = 268
((((4*75)-25)-5)-2) = 268
(2*(5+(25+(4+100)))) = 268
((5*(25+(4-(75-100))))-2) = 268
((5*(25-((75-100)-4)))-2) = 268
((5*(25+(4+(100-75))))-2) = 268
((5*(25+(4+(100-75))))-2) = 268
((5*(25+(4-(75-100))))-2) = 268
((5*(25-((75-100)-4)))-2) = 268
((5*((75+4)-25))-2) = 268
((((75*4)-25)-5)-2) = 268
((5*(25-(75-(4+100))))-2) = 268
((5*(25+((4+100)-75)))-2) = 268
((5*(25-(75-(100+4))))-2) = 268
((5*(25+((100+4)-75)))-2) = 268
(2*(5+(25+(100+4)))) = 268
((5*(25+(100+(4-75))))-2) = 268
((5*(25+(100-(75-4))))-2) = 268
((5*(25-((75-4)-100)))-2) = 268
((5*(25+(100-(75-4))))-2) = 268
((5*(25-((75-4)-100)))-2) = 268
((5*(25+(100+(4-75))))-2) = 268
((5*(75+(4-25)))-2) = 268
((5*(75-(25-4)))-2) = 268
((5*((4+(25+100))-75))-2) = 268
((5*((4+(100+25))-75))-2) = 268
((5*(75-(25-4)))-2) = 268
((5*(75+(4-25)))-2) = 268
((5*((25+(4+100))-75))-2) = 268
((5*((25+(100+4))-75))-2) = 268
((5*((100+(4+25))-75))-2) = 268
(((75+(100+(4*25)))-5)-2) = 268
((5*((100+(25+4))-75))-2) = 268
(((75+(100+(25*4)))-5)-2) = 268
(2*(5+(100+(4+25)))) = 268
((5*(100+(4+(25-75))))-2) = 268
((5*(100+(4-(75-25))))-2) = 268
((5*(100-((75-25)-4)))-2) = 268
((5*(100+(4-(75-25))))-2) = 268
((5*(100-((75-25)-4)))-2) = 268
((5*(100+(4+(25-75))))-2) = 268
(2*(5+(100+(25+4)))) = 268
((5*(100+(25+(4-75))))-2) = 268
((5*(100+(25-(75-4))))-2) = 268
((5*(100-((75-4)-25)))-2) = 268
((5*(100+(25-(75-4))))-2) = 268
((5*(100-((75-4)-25)))-2) = 268
((5*(100+(25+(4-75))))-2) = 268
((5*(100-(75-(4+25))))-2) = 268
((5*(100+((4+25)-75)))-2) = 268
(((100+(75+(4*25)))-5)-2) = 268
((5*(100-(75-(25+4))))-2) = 268
((5*(100+((25+4)-75)))-2) = 268
(((100+(75+(25*4)))-5)-2) = 268
(2*(25+(4+(5+100)))) = 268
(2*(25+(4+(100+5)))) = 268
((((4*75)-5)-25)-2) = 268
(2*(25+(5+(4+100)))) = 268
((((75*4)-5)-25)-2) = 268
(2*(25+(5+(100+4)))) = 268
(2*(25+(100+(4+5)))) = 268
(2*(25+(100+(5+4)))) = 268
((((5*(4+75))-100)-25)-2) = 268
((((5*(75+4))-100)-25)-2) = 268
((75-(5-(100+(4*25))))-2) = 268
((75+((100+(4*25))-5))-2) = 268
((75-(5-(100+(25*4))))-2) = 268
((75+((100+(25*4))-5))-2) = 268
((75+(100-(5-(4*25))))-2) = 268
((75-((5-(4*25))-100))-2) = 268
((75+(100+((4*25)-5)))-2) = 268
((75+(100-(5-(25*4))))-2) = 268
((75-((5-(25*4))-100))-2) = 268
((75+(100+((25*4)-5)))-2) = 268
(2*(100+(4+(5+25)))) = 268
(2*(100+(4+(25+5)))) = 268
(2*(100+(5+(4+25)))) = 268
(2*(100+(5+(25+4)))) = 268
((100-(5-(75+(4*25))))-2) = 268
((100+((75+(4*25))-5))-2) = 268
((100-(5-(75+(25*4))))-2) = 268
((100+((75+(25*4))-5))-2) = 268
(2*(100+(25+(4+5)))) = 268
(2*(100+(25+(5+4)))) = 268
((((5*(4+75))-25)-100)-2) = 268
((((5*(75+4))-25)-100)-2) = 268
((100+(75-(5-(4*25))))-2) = 268
((100-((5-(4*25))-75))-2) = 268
((100+(75+((4*25)-5)))-2) = 268
((100+(75-(5-(25*4))))-2) = 268
((100-((5-(25*4))-75))-2) = 268
((100+(75+((25*4)-5)))-2) = 268
(((100*((75-5)-2))/25)-4) = 268
(((100*((75-5)-2))/25)-4) = 268
(((100*((75-2)-5))/25)-4) = 268
(((100*((75-2)-5))/25)-4) = 268
(((100*(75-(2+5)))/25)-4) = 268
(((100*(75-(5+2)))/25)-4) = 268
(4*(75-(2*(100/25)))) = 268
(4*(75-(2*(100/25)))) = 268
(4*(75-((2*100)/25))) = 268
(4*(75-((100*2)/25))) = 268
((((4*75)-25)-2)-5) = 268
((((75*4)-25)-2)-5) = 268
(((75+(100+(4*25)))-2)-5) = 268
(((75+(100+(25*4)))-2)-5) = 268
(((100+(75+(4*25)))-2)-5) = 268
(((100+(75+(25*4)))-2)-5) = 268
((((4*75)-2)-25)-5) = 268
((((75*4)-2)-25)-5) = 268
((75-(2-(100+(4*25))))-5) = 268
((75+((100+(4*25))-2))-5) = 268
((75-(2-(100+(25*4))))-5) = 268
((75+((100+(25*4))-2))-5) = 268
((75+(100-(2-(4*25))))-5) = 268
((75-((2-(4*25))-100))-5) = 268
((75+(100+((4*25)-2)))-5) = 268
((75+(100-(2-(25*4))))-5) = 268
((75-((2-(25*4))-100))-5) = 268
((75+(100+((25*4)-2)))-5) = 268
((100-(2-(75+(4*25))))-5) = 268
((100+((75+(4*25))-2))-5) = 268
((100-(2-(75+(25*4))))-5) = 268
((100+((75+(25*4))-2))-5) = 268
((100+(75-(2-(4*25))))-5) = 268
((100-((2-(4*25))-75))-5) = 268
((100+(75+((4*25)-2)))-5) = 268
((100+(75-(2-(25*4))))-5) = 268
((100-((2-(25*4))-75))-5) = 268
((100+(75+((25*4)-2)))-5) = 268
((((4*75)-5)-2)-25) = 268
((((75*4)-5)-2)-25) = 268
((((5*(4+75))-100)-2)-25) = 268
((((5*(75+4))-100)-2)-25) = 268
((((4*75)-2)-5)-25) = 268
((((75*4)-2)-5)-25) = 268
((75+(2*(4+(5+100))))-25) = 268
((75+(2*(4+(100+5))))-25) = 268
((75+(2*(5+(4+100))))-25) = 268
((75+(2*(5+(100+4))))-25) = 268
((75+(2*(100+(4+5))))-25) = 268
((75+(2*(100+(5+4))))-25) = 268
((((5*(4+75))-2)-100)-25) = 268
((((5*(75+4))-2)-100)-25) = 268
((100*(75-(2*4)))/25) = 268
((100*(75-(4*2)))/25) = 268
(75-(2+(5-(100+(4*25))))) = 268
(75-(2-((100+(4*25))-5))) = 268
(75+(((100+(4*25))-5)-2)) = 268
(75-(2+(5-(100+(25*4))))) = 268
(75-(2-((100+(25*4))-5))) = 268
(75+(((100+(25*4))-5)-2)) = 268
(75-(2-(100-(5-(4*25))))) = 268
(75+((100-(5-(4*25)))-2)) = 268
(75-(2+((5-(4*25))-100))) = 268
(75-(2-(100+((4*25)-5)))) = 268
(75+((100+((4*25)-5))-2)) = 268
(75-(2-(100-(5-(25*4))))) = 268
(75+((100-(5-(25*4)))-2)) = 268
(75-(2+((5-(25*4))-100))) = 268
(75-(2-(100+((25*4)-5)))) = 268
(75+((100+((25*4)-5))-2)) = 268
(75-(5+(2-(100+(4*25))))) = 268
(75-(5-((100+(4*25))-2))) = 268
(75+(((100+(4*25))-2)-5)) = 268
(75-(5+(2-(100+(25*4))))) = 268
(75-(5-((100+(25*4))-2))) = 268
(75+(((100+(25*4))-2)-5)) = 268
(75-(5-(100-(2-(4*25))))) = 268
(75+((100-(2-(4*25)))-5)) = 268
(75-(5+((2-(4*25))-100))) = 268
(75-(5-(100+((4*25)-2)))) = 268
(75+((100+((4*25)-2))-5)) = 268
(75-(5-(100-(2-(25*4))))) = 268
(75+((100-(2-(25*4)))-5)) = 268
(75-(5+((2-(25*4))-100))) = 268
(75-(5-(100+((25*4)-2)))) = 268
(75+((100+((25*4)-2))-5)) = 268
(75-(25-(2*(4+(5+100))))) = 268
(75+((2*(4+(5+100)))-25)) = 268
(75-(25-(2*(4+(100+5))))) = 268
(75+((2*(4+(100+5)))-25)) = 268
(75-(25-(2*(5+(4+100))))) = 268
(75+((2*(5+(4+100)))-25)) = 268
(75-(25-(2*(5+(100+4))))) = 268
(75+((2*(5+(100+4)))-25)) = 268
(75-(25-(2*(100+(4+5))))) = 268
(75+((2*(100+(4+5)))-25)) = 268
(75-(25-(2*(100+(5+4))))) = 268
(75+((2*(100+(5+4)))-25)) = 268
(75+(100-(2+(5-(4*25))))) = 268
(75-((2+(5-(4*25)))-100)) = 268
(75+(100-(2-((4*25)-5)))) = 268
(75-((2-((4*25)-5))-100)) = 268
(75+(100+(((4*25)-5)-2))) = 268
(75+(100-(2+(5-(25*4))))) = 268
(75-((2+(5-(25*4)))-100)) = 268
(75+(100-(2-((25*4)-5)))) = 268
(75-((2-((25*4)-5))-100)) = 268
(75+(100+(((25*4)-5)-2))) = 268
(75+(100-(5+(2-(4*25))))) = 268
(75-((5+(2-(4*25)))-100)) = 268
(75+(100-(5-((4*25)-2)))) = 268
(75-((5-((4*25)-2))-100)) = 268
(75+(100+(((4*25)-2)-5))) = 268
(75+(100-(5+(2-(25*4))))) = 268
(75-((5+(2-(25*4)))-100)) = 268
(75+(100-(5-((25*4)-2)))) = 268
(75-((5-((25*4)-2))-100)) = 268
(75+(100+(((25*4)-2)-5))) = 268
(100+(2*(4+(5+75)))) = 268
(100+(2*(4+(75+5)))) = 268
(100+(2*(4+(75+(25/5))))) = 268
(100+(2*(4+(75+(25/5))))) = 268
(100+(2*(5+(4+75)))) = 268
(100+(2*(5+(75+4)))) = 268
(100-(2+(5-(75+(4*25))))) = 268
(100-(2-((75+(4*25))-5))) = 268
(100+(((75+(4*25))-5)-2)) = 268
(100-(2+(5-(75+(25*4))))) = 268
(100-(2-((75+(25*4))-5))) = 268
(100+(((75+(25*4))-5)-2)) = 268
((((5*(4+75))-25)-2)-100) = 268
((((5*(75+4))-25)-2)-100) = 268
(100+(2*(75+(4+5)))) = 268
(100+(2*(75+(4+(25/5))))) = 268
(100+(2*(75+(4+(25/5))))) = 268
(100+(2*(75+(5+4)))) = 268
(100-(2-(75-(5-(4*25))))) = 268
(100+((75-(5-(4*25)))-2)) = 268
(100-(2+((5-(4*25))-75))) = 268
(100-(2-(75+((4*25)-5)))) = 268
(100+((75+((4*25)-5))-2)) = 268
(100-(2-(75-(5-(25*4))))) = 268
(100+((75-(5-(25*4)))-2)) = 268
(100-(2+((5-(25*4))-75))) = 268
(100-(2-(75+((25*4)-5)))) = 268
(100+((75+((25*4)-5))-2)) = 268
(100+(4*(2+(25+(75/5))))) = 268
(100+(4*(2+(25+(75/5))))) = 268
(100+(4*(25+(2+(75/5))))) = 268
(100+(4*(25+(2+(75/5))))) = 268
(100-(5+(2-(75+(4*25))))) = 268
(100-(5-((75+(4*25))-2))) = 268
(100+(((75+(4*25))-2)-5)) = 268
(100-(5+(2-(75+(25*4))))) = 268
(100-(5-((75+(25*4))-2))) = 268
(100+(((75+(25*4))-2)-5)) = 268
(100-(5-(75-(2-(4*25))))) = 268
(100+((75-(2-(4*25)))-5)) = 268
(100-(5+((2-(4*25))-75))) = 268
(100-(5-(75+((4*25)-2)))) = 268
(100+((75+((4*25)-2))-5)) = 268
(100-(5-(75-(2-(25*4))))) = 268
(100+((75-(2-(25*4)))-5)) = 268
(100-(5+((2-(25*4))-75))) = 268
(100-(5-(75+((25*4)-2)))) = 268
(100+((75+((25*4)-2))-5)) = 268
((((5*(4+75))-2)-25)-100) = 268
((((5*(75+4))-2)-25)-100) = 268
(100+(75-(2+(5-(4*25))))) = 268
(100-((2+(5-(4*25)))-75)) = 268
(100+(75-(2-((4*25)-5)))) = 268
(100-((2-((4*25)-5))-75)) = 268
(100+(75+(((4*25)-5)-2))) = 268
(100+(75-(2+(5-(25*4))))) = 268
(100-((2+(5-(25*4)))-75)) = 268
(100+(75-(2-((25*4)-5)))) = 268
(100-((2-((25*4)-5))-75)) = 268
(100+(75+(((25*4)-5)-2))) = 268
(100+(75-(5+(2-(4*25))))) = 268
(100-((5+(2-(4*25)))-75)) = 268
(100+(75-(5-((4*25)-2)))) = 268
(100-((5-((4*25)-2))-75)) = 268
(100+(75+(((4*25)-2)-5))) = 268
(100+(75-(5+(2-(25*4))))) = 268
(100-((5+(2-(25*4)))-75)) = 268
(100+(75-(5-((25*4)-2)))) = 268
(100-((5-((25*4)-2))-75)) = 268
(100+(75+(((25*4)-2)-5))) = 268

but of course, MANY of these are redundant due to commutativity.

One could easily avoid many of the solutions that are checked in the brute-force variant. One of the first steps could be to avoid the creation of nodes that contain commutative elements, and possibly implement an equals method for the quick-and-dirty Node class that I sketched there, which takes commutativity into account, and then use Sets of Nodes instead of the List. And further, "simple", "low level" optimizations may be possible as well (e.g. an early return when a perfect match is found).

And concerning your actual question, whether there is a solution that is "better" than brute force: My gut-feeling is that the answer is "no", but this depends on which problem should be solved. The key point is here: Assume that you are given a list of available numbers, and a desired result value. And assume, that it is not possible to create the result value from the given input values. E.g. when you have

input = { 1,2,3,4,5,6 }
result = 10000000000;

I think that in order to really prove that this is not possible, you have to enumerate all combinations (returning the "best" one in the end, which here will probably be 1*2*3*4*5*6). If you skip any combination, how should you be sure that it was not exactly the best one?

But again: This is just a gut feeling. Maybe someone who is more ... mathematically involved ... can prove me wrong ....

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!