问题
I have function in Maxima CAS :
f(t) := (2*exp(2*%i*%pi*t) - exp(4*%pi*t*%i))/4;
here:
- t is a real number between 0 and 1
- function should give a point on the boundary of main cardioid of Mandelbrot set
How can I solve equation :
eq1:c=f(t);
(where c is a complex number)
?
Solve doesn't work
solve( eq1,t);
result is empty list
[]
Result of this equation should give real number t ( internal angle or rotation number ) from complex point c
EDIT: Thx to comment by @JosehDoggie
I can draw initial equation using:
load(draw)$
f(t):=(2*exp(%i*t) - exp(2*t*%i))/4;
draw2d(
key="main cardioid",
nticks=200,
parametric( 0.5*cos(t) - 0.25*cos(2*t), 0.5*sin(t) - 0.25*sin(2*t), t,0,2*%pi),
title="main cardioid of M set "
)$
or
draw2d(polar(abs(exp(t*%i)/2 -exp(2*t*%i)/4),t,0,2*%pi));
Similar image ( cardioid) is here
Edit2:
(%i1) eq1:c = exp(%pi*t*%i)/2 - exp(2*%pi*t*%i)/4;
%i %pi t 2 %i %pi t
%e %e
(%o1) c = ---------- - ------------
2 4
(%i2) solve(eq1,t);
%i log(1 - sqrt(1 - 4 c)) %i log(sqrt(1 - 4 c) + 1)
(%o2) [t = - -------------------------, t = - -------------------------]
%pi %pi
So :
f1(c):=float(cabs( - %i* log(1 - sqrt(1 - 4* c))/%pi));
f2(c):=float(cabs( - %i* log(1 + sqrt(1 - 4* c))/%pi));
but the results are not good.
Edit 3 :
Maybe I shoud start from it. I have:
- complex numbers c ( = boundary of cardioid)
- real numbers t ( from 0 to 1 or sometimes from 0 to 2*pi )
- function f which computes c from t : c= f(t)
I want to find function which computes t from c: t = g(c)
testing values :
- t = 0 , c= 1/4
- t = 1/2 , c= -3/4
- t = 1/3 , c = c = -0.125 +0.649519052838329*%i
- t = 2/5 , c = -0.481762745781211 +0.531656755220025*%i
- t = 0.118033988749895 c = 0.346828007859920 +0.088702386914555*%i
- t = 0.618033988749895 , c = -0.390540870218399 -0.586787907346969*%i
- t = 0.718033988749895 c = 0.130349371041523 -0.587693986342220*%i
回答1:
load("to_poly_solve") $
e: (2*exp(2*%i*%pi*t) - exp(4*%pi*t*%i))/4 - c $
s: to_poly_solve(e, t) $
s: maplist(lambda([e], rhs(first(e))), s) $ /* unpack arguments of %union */
ratexpand(s);
Outputs
%i log(1 - sqrt(1 - 4 c)) %i log(sqrt(1 - 4 c) + 1)
(%o6) [%z7 - -------------------------, %z9 - -------------------------]
2 %pi 2 %pi
来源:https://stackoverflow.com/questions/50260551/how-can-i-solve-exponential-equation-in-maxima-cas