问题
I am a little bit confused about the data augmentation performed in PyTorch.
Because we are dealing with segmentation tasks, we need data and mask for the same data augmentation, but some of them are random, such as random rotation.
Keras provides a random seed
guarantee that data and mask do the same operation, as shown in the following code:
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=25,
horizontal_flip=True,
vertical_flip=True)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
image_generator = image_datagen.flow(train_data, seed=seed, batch_size=1)
mask_generator = mask_datagen.flow(train_label, seed=seed, batch_size=1)
train_generator = zip(image_generator, mask_generator)
I didn't find a similar description in the official Pytorch documentation, so I don't know how to ensure that data and mask can be processed synchronously.
Pytorch does provide such a function, but I want to apply it to a custom Dataloader.
For example:
def __getitem__(self, index):
img = np.zeros((self.im_ht, self.im_wd, channel_size))
mask = np.zeros((self.im_ht, self.im_wd, channel_size))
temp_img = np.load(Image_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_label = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
for i in range(channel_size):
img[:,:,i] = temp_img[self.count[index] + i]
mask[:,:,i] = temp_label[self.count[index] + i]
if self.transforms:
img = np.uint8(img)
mask = np.uint8(mask)
img = self.transforms(img)
mask = self.transforms(mask)
return img, mask
In this case, img and mask will be transformed separately, because some operations such as random rotation are random, so the correspondence between mask and image may be changed. In other words, the image may have rotated but the mask did not do this.
EDIT 1
I used the method in augmentations.py, but I got an error::
Traceback (most recent call last):
File "test_transform.py", line 87, in <module>
for batch_idx, image, mask in enumerate(train_loader):
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 314, in __next__
batch = self.collate_fn([self.dataset[i] for i in indices])
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 314, in <listcomp>
batch = self.collate_fn([self.dataset[i] for i in indices])
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 103, in __getitem__
return self.dataset[self.indices[idx]]
File "/home/dirk/home/data/dirk/segmentation_unet_pytorch/data.py", line 164, in __getitem__
img, mask = self.transforms(img, mask)
File "/home/dirk/home/data/dirk/segmentation_unet_pytorch/augmentations.py", line 17, in __call__
img, mask = a(img, mask)
TypeError: __call__() takes 2 positional arguments but 3 were given
This is my code for __getitem__()
:
data_transforms = {
'train': Compose([
RandomHorizontallyFlip(),
RandomRotate(degree=25),
transforms.ToTensor()
]),
}
train_set = DatasetUnetForTestTransform(fold=args.fold, random_index=args.random_index,transforms=data_transforms['train'])
# __getitem__ in class DatasetUnetForTestTransform
def __getitem__(self, index):
img = np.zeros((self.im_ht, self.im_wd, channel_size))
mask = np.zeros((self.im_ht, self.im_wd, channel_size))
temp_img = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_label = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_img, temp_label = crop_data_label_from_0(temp_img, temp_label)
for i in range(channel_size):
img[:,:,i] = temp_img[self.count[index] + i]
mask[:,:,i] = temp_label[self.count[index] + i]
if self.transforms:
img = T.ToPILImage()(np.uint8(img))
mask = T.ToPILImage()(np.uint8(mask))
img, mask = self.transforms(img, mask)
img = T.ToTensor()(img).copy()
mask = T.ToTensor()(mask).copy()
return img, mask
EDIT 2
I found that after ToTensor, the dice between the same labels becomes 255 instead of 1, how to fix it?
# Dice computation
def DSC_computation(label, pred):
pred_sum = pred.sum()
label_sum = label.sum()
inter_sum = np.logical_and(pred, label).sum()
return 2 * float(inter_sum) / (pred_sum + label_sum)
Feel free to ask if more code is needed to explain the problem.
回答1:
torchvision
also provides similar functions [document].
Here is a simple example,
import torchvision
from torchvision import transforms
trans = transforms.Compose([transforms.CenterCrop((178, 178)),
transforms.Resize(128),
transforms.RandomRotation(20),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dset = torchvision.datasets.MNIST(data_root, transforms=trans)
EDIT
A brief example when customizing your own CelebA dataset. Note that, to apply transformations, you need call transform
list in __getitem__
.
class CelebADataset(Dataset):
def __init__(self, root, transforms=None, num=None):
super(CelebADataset, self).__init__()
self.img_root = os.path.join(root, 'img_align_celeba')
self.attr_root = os.path.join(root, 'Anno/list_attr_celeba.txt')
self.transforms = transforms
df = pd.read_csv(self.attr_root, sep='\s+', header=1, index_col=0)
#print(df.columns.tolist())
if num is None:
self.labels = df.values
self.img_name = df.index.values
else:
self.labels = df.values[:num]
self.img_name = df.index.values[:num]
def __getitem__(self, index):
img = Image.open(os.path.join(self.img_root, self.img_name[index]))
# only use blond_hair, eyeglass, male, smile
indices = [9, 15, 20, 31]
label = np.take(self.labels[index], indices)
label[label==-1] = 0
if self.transforms is not None:
img = self.transforms(img)
return np.asarray(img), label
def __len__(self):
return len(self.labels)
EDIT 2
I probably miss something at the first glance. The main point of your problem is how to apply "the same" data preprocessing to img and labels. To my understanding, there is no available Pytorch built-in function. So, what I did before is to implement the augmentation by myself.
class RandomRotate(object):
def __init__(self, degree):
self.degree = degree
def __call__(self, img, mask):
rotate_degree = random.random() * 2 * self.degree - self.degree
return img.rotate(rotate_degree, Image.BILINEAR),
mask.rotate(rotate_degree, Image.NEAREST)
Note that the input should be PIL format. See this for more information.
回答2:
Transforms which require input parameters like RandomCrop
has a get_param
method which would return the parameters for that particular transformation. This can be then applied to both the image and mask using the functional interface of transforms:
from torchvision import transforms
import torchvision.transforms.functional as F
i, j, h, w = transforms.RandomCrop.get_params(input, (100, 100))
input = F.crop(input, i, j, h, w)
target = F.crop(target, i, j, h, w)
Sample available here: https://github.com/pytorch/vision/releases/tag/v0.2.0
Complete example available here for VOC & COCO: https://github.com/pytorch/vision/blob/master/references/segmentation/transforms.py https://github.com/pytorch/vision/blob/master/references/segmentation/train.py
Regarding the error,
ToTensor()
was not overridden to handle additional mask argument, so it cannot be in data_transforms
. Moreover, __getitem__
does ToTensor
of both img
and mask
before returning them.
data_transforms = {
'train': Compose([
RandomHorizontallyFlip(),
RandomRotate(degree=25),
#transforms.ToTensor() => remove this line
]),
}
来源:https://stackoverflow.com/questions/58215056/how-to-use-torchvision-transforms-for-data-augmentation-of-segmentation-task-in