问题
Is it possible to create a key->type map at compile time, with each key-value being added when an instance of a variadic function is called?
template <typename T, typename ... Args>
void writeToQueue(Args... args) {
//Do something with args.
// Insert to map. something akin to:
// CODEMAP[T] = Args...
// T -> Args... mapped when foo<T,Args...> is called.
}
Or
template <int code, typename ... Args>
void writeToQueue(Args... args) {
//Do something with args.
// Insert to map. something akin to:
// CODEMAP[code] = Args...
// code -> Args... mapped when foo<code,Args...> is called.
}
In the above, the requirement is have a CODEMAP that maps either type->type or int->type (whichever is feasible) but the map is populated when the function foo is called, so that it is not a requirement beforehand to know code and args.
Is this at all possible? Either through boost/preprocessor/template programming?
Edit: CODEMAP is as stated, a map to store code -> type information. During runtime, a reader block (say R) would read the messages stored/processed by foo() and parse based on the code at the beginning of a message. the code is always fixed size (4 chars or 1 int).
It's the same translation unit.
Edit: So here's the deal:
Producer: writes data to FIFO queue (critical code hot path) -> Consumer thread reads and process the info from the queue.
A pseudo code is below:
Producer:
void Producer::run() {
// This guy shouldn't worry about the type of data being written.
// So, encapsulating data into structs and passing it to queue is
// out of question.
writeToQueue<Code1>(1,2,"123123",'a', 3.1416);
writeToQueue<Code2>(4,1,'b');
template <int Code, typename ...Args>
void writeToQueue(Args... args) {
queue.insert(args...);
// Need code to args... mapping. So, decided to create static
// instantiation of a formatspecifier class.
static formatspecifier<Code, args...> f{};
}
// To encode the type information to be used in run time.
template <int Code, typename ... Args>
class formatspecifier{
formatspecifier() {
global::codemap[Code] = encodeTypeInfo<Args...>();
}
};
}
Consumer:
void Consumer::readfromQueue() {
while(true) {
if (queue.dataAvailable()) {
const auto code = queue.getCode();
// get encoded type info format from global::codemap map.
const auto fmt = global::codemap[code];
for (int i=0; i < fmt.len; i++) {
// I am unsure how this part should look.
process<fmt[0]::type>(queue.getData<fmt[0]::type>());
}
}
}
}
回答1:
Instead of having a map, you can template a struct over code
like the following:
enum Codes {
BEGIN_CODE = 0,
Code1,
Code2,
NB_CODES
};
template <typename ... Args>
struct param_pack {
// Alternatively you could also use std::tuple?!
};
template <Code code>
struct code_info;
// You still have to manually define this at some point...
// For all your different messages...
template <>
struct code_info<Code1> {
typedef param_pack<int, double, double> args_t;
};
template <>
struct code_info<Code2> {
typedef param_pack<int, float, float, long> args_t;
}
First step checked, we have the type information somewhere for our different message codes. Now, how do we process them using that information? It's time for some template magic:
namespace details {
template <typename ArgPack>
struct pack_processor;
template <typename T, typename ... Args>
struct pack_processor<param_pack<T, Args...>> {
static void process_pack(YourQueue& queue) {
process<T>(queue.getData<T>());
pack_processor<param_pack<Args...>>::process_pack(queue);
}
};
template <typename T>
struct pack_processor<param_pack<T>> {
static void process_pack(YourQueue& queue) {
process<T>(queue.getData<T>());
}
};
} // namespace details
template <Code code>
process_message(YourQueue& queue) {
details::pack_processor<typename code_info<code>::args_t>::process_pack(queue);
}
Then you can add another templates to find the relevant processing steps to apply on your queue depending on the message's code... To do so we must "cheat" a little bit: since we can only have the desired code at runtime, we can't branch the processing immediately, we need to use the "template switch" trick. This is illustrated below:
namespace details {
// This is not static:
// you can't have static polymorphism when you get information from runtime...
template <Code ref_code>
void process_data_with_code(Code code, YourQueue& queue) {
// We found the good code:
if (code == ref_code) {
// We retrieve the static information
// and run the appropriate process_pack specialization -> this is static
process_message<ref_code>(queue);
} else {
process_data_with_code<static_cast<Code>(ref_code-1)>(code, queue);
}
}
template <>
void process_data_for_code<BEGIN_CODE>(Code code, YourQueue& queue) {
std::cout << "Code not found..." << std::endl;
}
} // namespace details
void process_data(Code code, YourQueue& queue) {
process_data_for_code<static_cast<Code>(NB_CODE-1)>(code, queue);
}
You can find a running example on Coliru with a dummy YourQueue
and process()
implementation.
This solves the consumer part. You can solve the producer part similarly by adding the relevant methods inside pack_processor
specializations and a generic writeToQueue
method which will use the same kind of Template Switch trick we just saw.
回答2:
So, I tried using polymorphism. It seems to work by storing the derived formatted message to the queue. While de-queuing, the vptr should point to correct implementation of process()
.
class Message {
virtual void process() = 0;
}
template <typename... Args>
class FormattedMessage : public Message {
std::tuple<Args...> data;
//Specialize process function for each formatted message.
void process() {
//As now I have the tuple, I can easily iterate/process it.
}
}
Producer:
template <typename ...Args>
void Producer::writeToQueue(Args... args) {
using fmttype = FormattedMessage<Args...>;
this->queue.push<fmttype>(args...);
}
Consumer:
void Consumer::readfromQueue() {
while(true) {
if (queue.dataAvailable()) {
this->queue.template front<Message>().process();
this->queue.pop(this->queue.template front<Message>().size());
}
}
}
来源:https://stackoverflow.com/questions/38564365/create-a-compile-time-key-to-type-map-which-is-filled-by-calls-to-a-variadic-fun