问题
I have a df
looks like,
A B C D
2017-10-01 2017-10-11 M 2017-10
2017-10-02 2017-10-03 M 2017-10
2017-11-01 2017-11-04 B 2017-11
2017-11-08 2017-11-09 B 2017-11
2018-01-01 2018-01-03 A 2018-01
the dtype
of A
and B
are datetime64
, C
and D
are of strings
;
I like to groupby
C
and D
and get the differences between B
and A
,
df.groupby(['C', 'D']).apply(lambda row: row['B'] - row['A'])
but I don't know how to sum such differences in each group and assign the values to a new column say E
, possibly in a new df
,
C D E
M 2017-10 11
M 2017-10 11
B 2017-11 4
B 2017-11 4
A 2018-01 2
回答1:
Base on you code
df.merge(df.groupby(['C', 'D']).apply(lambda row: row['B'] - row['A']).sum(level=[0,1]).reset_index())
Out[292]:
A B C D 0
0 2017-10-01 2017-10-11 M 2017-10 11 days
1 2017-10-02 2017-10-03 M 2017-10 11 days
2 2017-11-01 2017-11-04 B 2017-11 4 days
3 2017-11-08 2017-11-09 B 2017-11 4 days
4 2018-01-01 2018-01-03 A 2018-01 2 days
来源:https://stackoverflow.com/questions/49324988/pandas-sum-the-differences-between-two-columns-in-each-group