问题
I have two dataframes and each have a column called Song. However sometimes the songs are spelled differently. How can I used difflib (or something similar) to get the Song spelling of one dataframe in a new column of the other dataframe?
ex:
Dataframe1
Song Artist
like a virgi madonna
Dataframe2
Song Rank
like a virgin 2
Result
Song Artist SongAlt
like a virgin Madonna like a virgi
回答1:
Step 1: Merge whatever can be merged
In [67]: df1
Out[67]:
Song Artist
0 mysong myartist
1 like a virgi madonna
In [68]: df2
Out[68]:
Song Rank
0 mysong 1
1 like a virgin 2
In [69]: merged = pd.merge(df1, df2, on='Song')
In [70]: merged
Out[70]:
Song Artist Rank
0 mysong myartist 1
Step 2: Find out what's remaining
In [71]: unmerged = df2[~df2.isin(merged)].dropna()
In [72]: unmerged
Out[72]:
Song Rank
1 like a virgin 2.0
Step 3: Use difflib's get_close_matches
to get the closest match
In [73]: songs = list(df1['Song'].unique())
In [74]: def closest(a):
...: try:
...: return difflib.get_close_matches(a, songs)[0]
...: except IndexError:
...: return "Not Found"
In [75]: unmerged['closest_song'] = unmerged.apply(lambda row: closest(row['Song']), axis=1)
In [76]: unmerged
Out[76]:
Song Rank closest_song
1 like a virgin 2.0 like a virgi
Step 4: Get the similarity percentage if you want
In [77]: def similar(a, b):
...: return difflib.SequenceMatcher(None, a, b).ratio()
In [78]: unmerged['Similarity'] = unmerged.apply(lambda row: similar(row['closest_song'], row['Song']), axis=1)
In [79]: unmerged
Out[79]:
Song Rank closest_song Similarity
1 like a virgin 2.0 like a virgi 0.96
Step 5: Merge using the closest values
In [80]: unmerged.rename(columns={'Song': 'Old_Song', 'closest_song': 'Song'}, inplace=True)
In [81]: new = unmerged.merge(df1, on='Song')[['Song', 'Artist', 'Rank']]
Out[81]:
Song Artist Rank
0 like a virgi madonna 2.0
In [82]: pd.concat([merged, new])
Out[82]:
Song Artist Rank
0 mysong myartist 1.0
0 like a virgi madonna 2.0
来源:https://stackoverflow.com/questions/50560174/similarity-between-2-dataframe-columns