图像识别之物体识别

橙三吉。 提交于 2021-02-08 04:05:33
'''
    物体识别
'''
import cv2 as cv
import os
import warnings
import numpy as np

import hmmlearn.hmm as hl

warnings.filterwarnings('ignore', category=DeprecationWarning)
np.seterr(all='ignore')


def search_objects(directory):
    directory = os.path.normpath(directory)
    if not os.path.isdir(directory):
        raise IOError('the directory' + directory + 'doesnt exist!')
    objects = {}
    for curdir, subdirs, files in os.walk(directory):
        for jpeg in (file for file in files if file.endswith('.jpg')):
            path = os.path.join(curdir, jpeg)
            label = path.split(os.path.sep)[-2]
            if label not in objects:
                objects[label] = []
            objects[label].append(path)

    return objects


train_objects = search_objects('./ml_data/objects/training/')
print(train_objects)

train_x, train_y = [], []
for label, filenames in train_objects.items():
    descs = np.array([])
    for filename in filenames:
        image = cv.imread(filename)
        gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
        h, w = gray.shape[:2]
        f = 200 / min(h, w)
        gray = cv.resize(gray, None, fx=f, fy=f)
        star = cv.xfeatures2d.StartDetector_create()
        keypoints = star.detect(gray)
        sift = cv.xfeatures2d.SIFT_create()
        desc = sift.compute(gray, keypoints)
        if len(descs) == 0:
            descs = desc
        else:
            descs = np.append(descs, desc, axis=0)

    train_x.append(descs)
    train_y.append(label)

models = {}
for descs, label in zip(train_x, train_y):
    model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
    models[label] = model.fit(descs)

test_objects = search_objects('./ml_data/objects/testing/')
print(test_objects)

test_x, test_y, test_z = [], [], []
for label, filenames in test_objects.items():
    test_z.append([])
    descs = np.array([])
    for filename in filenames:
        image = cv.imread(filename)
        test_z[-1].append(image)
        gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
        h, w = gray.shape[:2]
        f = 200 / min(h, w)
        gray = cv.resize(gray, None, fx=f, fy=f)
        star = cv.xfeatures2d.StartDetector_create()
        keypoints = star.detect(gray)
        sift = cv.xfeatures2d.SIFT_create()
        desc = sift.compute(gray, keypoints)
        if len(descs) == 0:
            descs = desc
        else:
            descs = np.append(descs, desc, axis=0)

    test_x.append(descs)
    test_y.append(label)

pred_test_y = []
for descs in test_x:
    best_score, best_label = None, None
    for label, model in models.items():
        score = model.score(descs)
        if (best_score is None) or (best_score < score):
            best_score, best_label = score, label
    pred_test_y.append(best_label)
i = 0
for label, pred_label, images in zip(test_y, pred_test_y, test_z):
    for image in images:
        i += 1
        cv.imshow('{} - {} {} {}'.format(i, label, '==' if label == pred_label else '!=', pred_label), image)
cv.waitKey()

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!