问题
Given a 2-dimensional array of positive integers, find the subrectangle of size HxW with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle.
Input: A 2D array NxN with positive elements The HxW size of the subrectangle
Output: The submatrix of HxW size with the largest sum of its elements.
I've solved this using a brute-force method, however, I'm now looking for a better solution with better complexity (my brute-force method's complexity is O(n6)).
回答1:
First create the cumulative sum of your matrix: O(n2)
Matrix
2 4 5 6
2 3 1 4
2 0 2 1
Cumulative sum
2 6 11 17
4 11 17 27
6 13 21 32
cumulative_sum(i,j)
is the sum of all the elements in the submatrix (0:i,0:j)
.
You can calculate the cumulative sum matrix using below logic:
cumulative_sum(i,j) = cumulative_sum(i-1,j) + cumulative_sum(i,j-1) - cumulative_sum(i-1,j-1) + matrix(i,j)
Using the cumulative sum matrix you can calculate sum of every sub-matrix in O(1):
calculating sum of submatrix (r1 ... r2 , c1 ... c2)
sum_sub = cumulative_sum(r2,c2) - cumulative_sum(r1-1,c2) - cumulative_sum(r2,c1-1) + cumulative_sum(r1-1,c1-1)
Then using two loops you can put the top-left of your HW rectangle on every point of the matrix and calculate the sum of that rectangle.
for r1=0->n_rows
for c1=0->n_cols
r2 = r1 + height - 1
c2 = c1 + width - 1
if valid(r1,c1,r2,c2) // doesn't exceed the original matrix
sum_sub = ... // formula mentioned above
best = max(sum_sub, best)
return best
This approach is in O(N2).
Here is the python implementation:
from copy import deepcopy
def findMaxSubmatrix(matrix, height, width):
nrows = len(matrix)
ncols = len(matrix[0])
cumulative_sum = deepcopy(matrix)
for r in range(nrows):
for c in range(ncols):
if r == 0 and c == 0:
cumulative_sum[r][c] = matrix[r][c]
elif r == 0:
cumulative_sum[r][c] = cumulative_sum[r][c-1] + matrix[r][c]
elif c == 0:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + matrix[r][c]
else:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + cumulative_sum[r][c-1] - cumulative_sum[r-1][c-1] + matrix[r][c]
best = 0
best_pos = None
for r1 in range(nrows):
for c1 in range(ncols):
r2 = r1 + height - 1
c2 = c1 + width - 1
if r2 >= nrows or c2 >= ncols:
continue
if r1 == 0 and c1 == 0:
sub_sum = cumulative_sum[r2][c2]
elif r1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r2][c1-1]
elif c1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2]
else:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2] - cumulative_sum[r2][c1-1] + cumulative_sum[r1-1][c1-1]
if best < sub_sum:
best_pos = r1,c1
best = sub_sum
print "maximum sum is:", best
print "top left corner on:", best_pos
matrix = [ [2,4,5,6],
[2,3,1,4],
[2,0,2,1] ]
findMaxSubmatrix(matrix,2,2)
output
maximum sum is: 16
top left corner on: (0, 2)
来源:https://stackoverflow.com/questions/39937212/maximum-subarray-of-size-hxw-within-a-2d-matrix